[1]
|
Yoon M G. Consensus of adaptive multi-agent systems. Systems & Control Letters, 2017, 102:9-44 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1109.3838
|
[2]
|
Yang H Y, Zhu X L, Zhang S Y. Consensus of second-order delayed multi-agent systems with leader-following. European Journal of Control, 2010, 16(2):188-199 doi: 10.3166/ejc.16.188-199
|
[3]
|
Han F J, Gao L, Yang H Y. Sampling control on collaborative flocking motion of discrete-time system with time-delays. Neurocomputing, 2016, 216:242-249 doi: 10.1016/j.neucom.2016.07.041
|
[4]
|
Mu X W, Yang Z. Containment control of discrete-time general linear multi-agent systems under dynamic digraph based on trajectory analysis. Neurocomputing, 2016, 171:1655-1660 doi: 10.1016/j.neucom.2015.07.079
|
[5]
|
Miao G Y, Cao J D, Alsaedi A, Alsaedi F E. Event-triggered containment control for multi-agent systems with constant time delays. Journal of the Franklin Institute, 2017, 354(15):6956-6977 doi: 10.1016/j.jfranklin.2017.08.010
|
[6]
|
Wang Q, Fu J J, Wang J Z. Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics. Systems & Control Letters, 2017, 99:33-39 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=06e1a4fe9dd39883d60548a372d6df36
|
[7]
|
刘帅, 谢立华, 张焕水.带噪声多自主体的均方包容控制.自动化学报, 2013, 39(11):1787-1795 http://www.aas.net.cn/CN/abstract/abstract18218.shtmlLiu Shuai, Xie Li-Hua, Zhang Huan-Shui. Mean square containment control of multi-agent systems with transmission noises. Acta Automatica Sinica, 2013, 39(11):1787-1795 http://www.aas.net.cn/CN/abstract/abstract18218.shtml
|
[8]
|
Li B, Chen Z Q, Liu Z X, Zhang C Y, Zhang Q. Containment control of multi-agent systems with fixed time-delays in fixed directed networks. Neurocomputing, 2016, 173:2069-2075 doi: 10.1016/j.neucom.2015.09.056
|
[9]
|
杨洪勇, 郭雷, 张玉玲, 姚秀明.复杂分数阶多自主体系统的运动一致性.自动化学报, 2014, 40(3):489-496 http://www.aas.net.cn/CN/abstract/abstract18314.shtmlYang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Movement consensus of complex fractional-order multi-agent systems. Acta Automatica Sinica, 2014, 40(3):489-496 http://www.aas.net.cn/CN/abstract/abstract18314.shtml
|
[10]
|
Zhao L, Jia Y M. Finite-time consensus for second-order stochastic multi-agent systems with nonlinear dynamics. Applied Mathematics & Computation, 2015, 270:278-290 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cefa2995a45a4a4093c3ccbf7ea28728
|
[11]
|
Fu J J, Wang J Z. Robust finite-time containment control of general linear multi-agent systems under directed communication graphs. Journal of the Franklin Institute, 2016, 353(12):2670-2689 doi: 10.1016/j.jfranklin.2016.05.015
|
[12]
|
朱亚锟, 关新平, 罗小元.线性和非线性动态异构多自主体系统的有限时间一致性.自动化学报, 2014, 40(11):2618-2624 http://www.aas.net.cn/CN/abstract/abstract18539.shtmlZhu Ya-Kun, Guan Xin-Ping, Luo Xiao-Yuan. Finite-time consensus of heterogeneous multi-agent systems with linear and nonlinear dynamics. Acta Automatica Sinica, 2014, 40(11):2618-2624 http://www.aas.net.cn/CN/abstract/abstract18539.shtml
|
[13]
|
Xu C J, Zheng Y, Su H S, Zeng H B. Containment for linear multi-agent systems with exogenous disturbances. Neurocomputing, 2015, 160:206-212 doi: 10.1016/j.neucom.2015.02.008
|
[14]
|
Yang H Y, Zhang Z X, Zhang S Y. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust & Nonlinear Control, 2011, 21(9):945-956 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201701011
|
[15]
|
Cao W J, Zhang J H, Ren W. Leader-follower consensus of linear multi-agent systems with unknown external disturbances. Systems & Control Letters, 2015, 82:64-70 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8c72268432876460cf59b5011bcd99d
|
[16]
|
Yang H Y, Han F J, Zhao M, Zhang S N, Yue J. Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays. Open Physics, 2017, 15(1):509-516 doi: 10.1515/phys-2017-0058
|
[17]
|
Sun F L, Zhu W, Li Y F, Liu F. Finite-time consensus problem of multi-agent systems with disturbance. Journal of the Franklin Institute, 2016, 353(12):2576-2587 doi: 10.1016/j.jfranklin.2016.04.016
|
[18]
|
Li S H, Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 2011, 47(8):1706-1712 doi: 10.1016/j.automatica.2011.02.045
|
[19]
|
Cheng Y Y, Du H B, He Y G, Jia R T. Robust finite-time synchronization of coupled harmonic oscillations with external disturbance. Journal of the Franklin Institute, 2015, 352(10):4366-4381 doi: 10.1016/j.jfranklin.2015.06.006
|
[20]
|
Cao Y C, Ren W. Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In: Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 3014-3019
|
[21]
|
Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems and Control Letters, 1992, 19(4):467-473 doi: 10.1016-0167-6911(92)90078-7/
|
[22]
|
Bhat S P, Bernstein D S. Finite-time stability of homogeneous systems. In: Proceedings of the 1997 American Control Conference. Albuquerque, NM: IEEE, 1997. 2513-2514
|
[23]
|
Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12):2092-2099 doi: 10.1016/j.automatica.2010.09.005
|
[24]
|
Chen Y Y, Wang Z Z, Zhang Y, Liu C L, Wang Q. A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonlinear Dynamics, 2017, 88(2):1173-1186 doi: 10.1007/s11071-016-3303-2
|
[25]
|
Chen Y Y, Zhang Y, Wang Z Z. An adaptive backstepping design for formation tracking motion in an unknown Eulerian specification flowfield. Journal of the Franklin Institute, 2017, 354(14):6217-6233 doi: 10.1016/j.jfranklin.2017.07.020
|