2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

解最优控制问题结合同伦法的自适应拟谱方法

秦廷华

秦廷华. 解最优控制问题结合同伦法的自适应拟谱方法. 自动化学报, 2019, 45(8): 1579-1585. doi: 10.16383/j.aas.2018.c170551
引用本文: 秦廷华. 解最优控制问题结合同伦法的自适应拟谱方法. 自动化学报, 2019, 45(8): 1579-1585. doi: 10.16383/j.aas.2018.c170551
QIN Ting-Hua. An Adaptive Pseudospectral Method Combined With Homotopy Method for Solving Optimal Control Problems. ACTA AUTOMATICA SINICA, 2019, 45(8): 1579-1585. doi: 10.16383/j.aas.2018.c170551
Citation: QIN Ting-Hua. An Adaptive Pseudospectral Method Combined With Homotopy Method for Solving Optimal Control Problems. ACTA AUTOMATICA SINICA, 2019, 45(8): 1579-1585. doi: 10.16383/j.aas.2018.c170551

解最优控制问题结合同伦法的自适应拟谱方法

doi: 10.16383/j.aas.2018.c170551
基金项目: 

重庆交通大学校内科学基金课题 15JDKJC-A010

详细信息
    作者简介:

    秦廷华  重庆交通大学数学与统计学院讲师.2012年获得上海大学计算数学专业博士学位.主要研究方向为最优控制问题数值方法.E-mail:qintinghua@126.com

An Adaptive Pseudospectral Method Combined With Homotopy Method for Solving Optimal Control Problems

Funds: 

Science Foundation Project of Chongqing Jiaotong University 15JDKJC-A010

More Information
    Author Bio:

    Lecturer at the School of Mathematics and Statistics, Chongqing Jiaotong University. He received his Ph. D. degree in computational mathematics from Shanghai University in 2012. His research interest covers numerical methods for optimal control problems

  • 摘要: 针对弱间断最优控制问题和Bang-Bang最优控制问题,提出一种结合同伦法的自适应拟谱方法.Chebyshev拟谱方法转换原问题成为非线性规划问题.基于同伦法思想,同伦参数改变路径约束的界限,得到一系列比较光滑的最优控制问题.通过解这些问题得到原问题的不光滑解.文中证明了弱间断情况下数值解的收敛性.依据这收敛性和同伦参数,误差指示量可以捕捉不光滑点.本文方法与其他方法在数值算例中的对比表明,本文方法在精度和效率上都有明显优势.
    1)  本文责任编委 张卫东
  • 图  1  表 8中${Tol}=5\times10^{-2}$对应的数值解

    Fig.  1  Numerical solutions for ${Tol}=5\times10^{-2}$ in Table 8

    表  1  算法1解全部算例使用的参数

    Table  1  The parameters of Algorithm 1 in all examples

    参数数值
    $N_{\min}$ $4$
    $N_{\rm{Initial}}$$8$
    ${P^{\rm CGL}_{\rm stop}}$$33$
    $\delta$$0$
    $\theta$$0.1$
    下载: 导出CSV

    表  2  算法1解例1的结果

    Table  2  The results of Example 1 by Algorithm 1

    ${Tol}$目标值相对误差时间(s)误差指示量配置点数
    $1\times10^{-1}$ $3.372\times10^{-9}$ $9.~7$$2.5452\times10^{-2}$ $49$
    $5\times10^{-2}$ $2.311\times10^{-10}$ $11.~4$$1.2418\times10^{-2}$ $49$
    $1\times10^{-2}$ $6.802\times10^{-10}$ $15.~8$$3.2392\times10^{-3}$ $49$
    $5\times10^{-3}$ $5.811\times10^{-10}$ $18.~0$$1.6129\times10^{-3}$ $49$
    $1\times10^{-3}$ $2.152\times10^{-10}$ $22.~4$$4.0097\times10^{-4}$ $49$
    $5\times10^{-4}$ $2.460\times10^{-10}$ $24.~5$$1.9961\times10^{-4}$ $49$
    $1\times10^{-4}$ $1.601\times10^{-10}$ $31.~5$$2.5017\times10^{-5}$ $49$
    $5\times10^{-5}$ $1.512\times10^{-10}$ $34.~0$$1.2464\times10^{-5}$ $49$
    $1\times10^{-5}$ $1.476\times10^{-10}$ $38.~5$$3.1159\times10^{-6}$ $49$
    下载: 导出CSV

    表  3  Chebyshev拟谱方法解例1的结果

    Table  3  The results of Example 1 by the Chebyshev pseudospectral method

    目标值相对误差时间(s)配置点数
    $4.2145\times10^{-4}$ $0.25$9
    $5.5397\times10^{-6}$ $0.38$17
    $5.1118\times10^{-7}$ $0.80$33
    $4.2394\times10^{-7}$ $5.27$65
    $3.9478\times10^{-9}$ $14.73$129
    $4.631\times10^{-10}$ $44.59$257
    下载: 导出CSV

    表  4  三种方法解例1的结果

    Table  4  The results of Example 1 by three methods

    数据来源目标值相对误差时间(s)配置点数
    表 2 (算法1) $2.311\times10^{-10}$ $11.4$ $49$
    表 3 (Chebyshev拟谱法) $4.631\times10^{-10}$ $44.59$ $257$
    文献[8]方法 $2.5054\times10^{-10}$ $19.39$
    文献[8]表 1 $1.9742\times10^{-10}$ $15~$
    下载: 导出CSV

    表  5  算法1解例2的结果

    Table  5  The results of Example 2 by Algorithm 1

    ${Tol}$目标值相对误差时间(s)误差指示量配置点数
    $1\times10^{-1}$ $8.0706\times10^{-9}$ $5.7$$6.3108\times10^{-3}$ $49$
    $5\times10^{-2}$ $4.7381\times10^{-9}$ $6.4$$9.0744\times10^{-4}$ $49$
    下载: 导出CSV

    表  6  Chebyshev拟谱方法解例2的结果

    Table  6  The results of Example 2 by the Chebyshev pseudospectral method

    目标值相对误差时间(s)配置点数
    $6.0018\times10^{-3}$ $0.13$9
    $1.5119\times10^{-3}$ $0.23$17
    $3.7982\times10^{-4}$ $0.39$33
    $9.7584\times10^{-5}$ $1.08$65
    $2.7067\times10^{-5}$ $2.62$129
    $1.8455\times10^{-5}$ $6.86$257
    下载: 导出CSV

    表  7  三种方法解例2的结果

    Table  7  The results of Example 2 by three methods

    数据来源目标值相对误差时间(s)配置点数
    表 5 (算法1) $~4.7381\times10^{-9}~$ $6.4$ $~49$
    表 6 (Chebyshev拟谱法) $~1.8455\times10^{-5}~$ $6.86$ $~257$
    文献[18] $~2.6492\times10^{-3}~$ $14.88$
    下载: 导出CSV

    表  8  算法1解例3的结果

    Table  8  The results of Example 3 by Algorithm 1

    $Tol$数值解目标值时间(s)误差指示量配置点数
    $1\times10^{-1}$ $-26.704709$ $334.6$$5.1952\times10^{-3}$ $~49$
    $5\times10^{-2}$ $-26.704676$ $423.4$$4.4434\times10^{-5}$ $~41$
    下载: 导出CSV

    表  9  Chebyshev拟谱方法解例3的结果

    Table  9  The results of Example 3 by the Chebyshev pseudospectral method

    数值解目标值时间(s)配置点数
    $-26.668531$ $1.7$ $9
    $-26.689549$ $4.0$ $17
    $-26.702575$ $8.0$ $33
    $-26.703963$ $87.4$ $65
    $-26.704482$ $153.2$129
    $-26.704704$ $1\, 380.0$257
    下载: 导出CSV

    表  10  三种方法解例3的结果

    Table  10  The results of Example 3 by three methods

    数据来源数值解目标值时间(s)点数
    表 8 (算法1) $-26.704709$ $334.6$ $49 \text{(配置点数)}$
    表 8 (算法1) $-26.704676$ $423.4$ $41 \text{(配置点数)}$
    表 9 (Chebyshev拟谱法) $-26.704704$ $1\, 380.0$ $257 \text{(配置点数)}$
    文献[19] $-26.705$ $5\, 000 \text{(网格点数)}$
    下载: 导出CSV
  • [1] 李俊峰, 蒋方华.连续小推力航天器的深空探测轨道优化方法综述.力学与实践, 2011, 33(3): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201103001

    Li Jun-Feng, Jiang Fang-Hua. Survey of low-thrust trajectory optimization methods for deep space exploration. Mechanics in Engineering, 2011, 33(3): 1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201103001
    [2] Ross I M, Karpenko M. A review of pseudospectral optimal control: from theory to flight. Annual Reviews in Control, 2012, 36(2): 182-197 doi: 10.1016/j.arcontrol.2012.09.002
    [3] Gong Q, Kang W, Ross I M. A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Transactions on Automatic Control, 2006, 51(7): 1115-1129 doi: 10.1109/TAC.2006.878570
    [4] Guo F. Global existence of weakly discontinuous solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Applied Mathematics: A Journal of Chinese Universities (Series B), 2007, 22(2): 181-200 doi: 10.1007/s11766-007-0207-4
    [5] Darby C L, Hager W W, Rao A V. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 2011, 32(4): 476- 502 doi: 10.1002/oca.957
    [6] Gong Q, Fahroo F, Ross I M. Spectral algorithm for pseudospectral methods in optimal control. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 460-471 doi: 10.2514/1.32908
    [7] 秦廷华, 马和平.最优控制问题弱间断解的一个自适应算法.控制与决策, 2013, 28(2): 313-316 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201302030

    Qin Ting-Hua, Ma He-Ping. Adaptive algorithm for weakly discontinuous solutions of optimal control problems. Control and Decision, 2013, 28(2): 313-316 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201302030
    [8] 秦廷华.解一类弱间断最优控制问题的一个自适应拟谱方法.控制与决策, 2017, 32(6): 1097-1102 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201706021

    Qin Ting-Hua. An adaptive pseudospectral method for solving a class of weakly discontinuous optimal control problems. Control and Decision, 2017, 32(6): 1097-1102 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201706021
    [9] 沈红新. 基于解析同伦的月地应急返回轨迹优化方法[博士学位论文], 国防科学技术大学, 中国, 2014. http://cdmd.cnki.com.cn/Article/CDMD-90002-1015959289.htm

    Shen Hong-Xin. Optimization Method for the Moon-Earth Abort Return Trajectories Based on Analytic Homotopic Technique [Ph. D. dissertation], National University of Defense Technology, China, 2014. http://cdmd.cnki.com.cn/Article/CDMD-90002-1015959289.htm
    [10] Mehrpouya M A, Shamsi M, Razzaghi M. A combined adaptive control parametrization and homotopy continuation technique for the numerical solution of bang-bang optimal control problems. ANZIAM Journal, 2014, 56(1): 48-65 doi: 10.1017/S1446181114000261
    [11] Guo T D, Jiang F H, Li J F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronautica, 2012, 71: 38-50 doi: 10.1016/j.actaastro.2011.08.008
    [12] Li J, Xi X N. Time-optimal reorientation of the rigid spacecraft using a pseudospectral method integrated homotopic approach. Optimal Control Applications and Methods, 2015, 36(6): 889-918 doi: 10.1002/oca.2145
    [13] Cai W W, Yang L P, Zhu Y W. Bang-bang optimal control for differentially flat systems using mapped pseudospectral method and analytic homotopic approach. Optimal Control Applications and Methods, 2016, 37(6): 1217-1235 doi: 10.1002/oca.2232
    [14] Ma L, Chen W F, Song Z Y, Shao Z J. A unified trajectory optimization framework for lunar ascent. Advances in Engineering Software, 2016, 94: 32-45 doi: 10.1016/j.advengsoft.2016.01.002
    [15] 秦廷华. 微分方程最优控制问题自适应方法[博士学位论文], 上海大学, 中国, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10280-1013107265.htm

    Qin Ting-Hua. Adaptive Methods for Optimal Control Problems Governed by Differential Equations [Ph. D. dissertation], Shanghai University, China, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10280-1013107265.htm
    [16] Gill P E, Murray W, Saunders M A. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Review, 2005, 47(1): 99-131 doi: 10.1137/S0036144504446096
    [17] Ma H P, Qin T H, Zhang W. An efficient Chebyshev algorithm for the solution of optimal control problems. IEEE Transactions on Automatic Control, 2011, 56(3): 675-680 doi: 10.1109/TAC.2010.2096570
    [18] 胡云卿, 刘兴高, 薛安克.带不等式路径约束最优控制问题的惩罚函数法.自动化学报, 2013, 39(12): 1996-2001 http://www.aas.net.cn/CN/abstract/abstract18238.shtml

    Hu Yun-Qing, Liu Xing-Gao, Xue An-Ke. A penalty method for solving inequality path constrained optimal control problems. Acta Automatica Sinica, 2013, 39(12): 1996-2001 http://www.aas.net.cn/CN/abstract/abstract18238.shtml
    [19] Osmolovskii N P, Maurer H. Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control. Philadelphia: SIAM, 2012. 249-251
  • 加载中
图(1) / 表(10)
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  148
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 录用日期:  2017-12-23
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回