2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全卷积神经网络与低秩稀疏分解的显著性检测

张芳 王萌 肖志涛 吴骏 耿磊 童军 王雯

张芳, 王萌, 肖志涛, 吴骏, 耿磊, 童军, 王雯. 基于全卷积神经网络与低秩稀疏分解的显著性检测. 自动化学报, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535
引用本文: 张芳, 王萌, 肖志涛, 吴骏, 耿磊, 童军, 王雯. 基于全卷积神经网络与低秩稀疏分解的显著性检测. 自动化学报, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535
ZHANG Fang, WANG Meng, XIAO Zhi-Tao, WU Jun, GENG Lei, TONG Jun, WANG Wen. Saliency Detection via Full Convolution Neural Network and Low Rank Sparse Decomposition. ACTA AUTOMATICA SINICA, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535
Citation: ZHANG Fang, WANG Meng, XIAO Zhi-Tao, WU Jun, GENG Lei, TONG Jun, WANG Wen. Saliency Detection via Full Convolution Neural Network and Low Rank Sparse Decomposition. ACTA AUTOMATICA SINICA, 2019, 45(11): 2148-2158. doi: 10.16383/j.aas.2018.c170535

基于全卷积神经网络与低秩稀疏分解的显著性检测

doi: 10.16383/j.aas.2018.c170535
基金项目: 

天津自然科学基金 15JCYBJC16600, 17JCQNJC01 400

国家自然科学基金 61601325

天津自然科学基金 17JCQNJC01400

中国纺织工业联合会应用基础研究项目 J201509

详细信息
    作者简介:

    张芳  天津工业大学电子与信息工程学院副教授.2009年获得天津大学精密仪器与光电子工程学院博士学位.主要研究方向为图像处理与模式识别.E-mail:hhzhangfang@126.com

    王萌  天津工业大学硕士研究生.2015年获得天津工业大学电子信息科学与技术专业学士学位.主要研究方向为模式识别, 机器学习.E-mail:wmccsunny@163.com

    吴骏  天津工业大学电子与信息工程学院副教授.2007年获得天津大学电子信息工程学院博士学位.主要研究方向为图像处理与模式识别, 人工神经网络.E-mail:zhenkongwujun@163.com

    耿磊  天津工业大学电子与信息工程学院副教授.2012年获得天津大学精密仪器与光电子工程学院博士学位.主要研究方向为图像处理与模式识别, 智能信号处理技术与系统, DSP系统研发.E-mail:genglei@tjpu.edu.cn

    童军  天津工业大学电子与信息工程学院教授.2009年获中国香港城市大学博士学位.主要研究方向为信号处理与通信技术.E-mail:eejtong@163.com

    王雯  天津工业大学电子与信息工程学院助理实验师.2015年获得天津工业大学电子与通信工程专业硕士学位.主要研究方向为图像处理与模式识别.E-mail:wangwen@tjpu.edu.cn

    通讯作者:

    肖志涛  天津工业大学电子与信息工程学院教授.2003年获得天津大学电子信息工程学院博士学位.主要研究方向为智能信号处理, 图像处理与模式识别.本文通信作者.E-mail:xiaozhitao@tjpu.edu.cn

Saliency Detection via Full Convolution Neural Network and Low Rank Sparse Decomposition

Funds: 

Natural Science Foundation of Tianjin 15JCYBJC16600, 17JCQNJC01 400

National Natural Science Foundation of China 61601325

Natural Science Foundation of Tianjin 17JCQNJC01400

Basic Application Research Project of China National Textile and Apparel Council J201509

More Information
    Author Bio:

     Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. She received her Ph. D. degree from the School of Precision Instrument and Opto-Electronics Engineering, Tianjin University in 2009. Her research interest covers image processing and pattern recognition

     Master student at the School of Electronics and Information Engineering, Tianjin Polytechnic University. She received her bachelor degree from the School of Electronic Information Science and Technology, Tianjin Polytechnic University in 2015. Her research interest covers pattern recognition and machine learning

     Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph. D. degree from the School of Electronics and Information Engineering, Tianjin University in 2007. His research interest covers image processing and pattern recognition, artiflcial neural network

     Associate professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph. D. degree from the School of Precision Instrument and Opto-Electronics Engineering, Tianjin University in 2012. His research interest covers image processing and pattern recognition, intelligent signal processing technology and system, DSP system research and development

     Professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph. D. degree from City University of Hong Kong, China in 2009. His research interest covers signal processing and communication techniques

     Assistant lab master at the School of Electronics and Information Engineering, Tianjin Polytechnic University. She received her master degree of electronics and communication engineering from Tianjin Polytechnic University in 2015. Her research interest covers image processing and pattern recognition

    Corresponding author: XIAO Zhi-Tao  Professor at the School of Electronics and Information Engineering, Tianjin Polytechnic University. He received his Ph. D. degree from the School of Electronics and Information Engineering, Tianjin University in 2003. His research interest covers intelligent signal processing, image processing and pattern recognition. Corresponding author of this paper
  • 摘要: 为了准确检测复杂背景下的显著区域,提出一种全卷积神经网络与低秩稀疏分解相结合的显著性检测方法,将图像分解为代表背景的低秩矩阵和对应显著区域的稀疏噪声,结合利用全卷积神经网络学习得到的高层语义先验知识,检测图像中的显著区域.首先,对原图像进行超像素聚类,并提取每个超像素的颜色、纹理和边缘特征,据此构成特征矩阵;然后,在MSRA数据库中,基于梯度下降法学习得到特征变换矩阵,利用全卷积神经网络学习得到高层语义先验知识;接着,利用特征变换矩阵和高层语义先验知识矩阵对特征矩阵进行变换;最后,利用鲁棒主成分分析算法对变换后的矩阵进行低秩稀疏分解,并根据分解得到的稀疏噪声计算显著图.在公开数据集上进行实验验证,并与当前流行的方法进行对比,实验结果表明,本文方法能够准确地检测感兴趣区域,是一种有效的自然图像目标检测与分割的预处理方法.
    Recommended by Associate Editor ZUO Wang-Meng
    1)  本文责任编委 左旺孟
  • 图  1  本文方法的总体框架

    Fig.  1  The overall framework of the proposed method

    图  2  部分中间过程结果图

    Fig.  2  Part of the intermediate process result

    图  3  FCNN的网络结构

    Fig.  3  The network structure of FCNN

    图  4  FCNN高层语义先验知识及显著性检测结果图比较

    Fig.  4  The FCNN high-level semantic prior knowledge and the comparison of saliency detection results

    图  5  实验结果比较图

    Fig.  5  The comparison of experimental results

    图  6  准确率-召回率比较

    Fig.  6  The comparison of Precision-Recall curves

    图  7  F-measure比较

    Fig.  7  The comparison of F-measure

    图  8  对本文结果进行线性拉伸后与DS方法的MAE值比较

    Fig.  8  The comparison of MAE between the results of linear stretching in this paper and the results of the DS method

    表  1  本文方法与传统方法的MAE比较

    Table  1  The comparison of MAE between the proposed method and traditional methods

    算法 MSRA-test1000 PASCAL-S
    FT 0.2480 0.3066
    SR 0.2383 0.2906
    CA 0.2462 0.2994
    SF 0.1449 0.2534
    GR 0.2524 0.2992
    MR 0.1855 0.2283
    BSCA 0.1859 0.2215
    LRMR 0.2442 0.2759
    本文算法 0.0969 0.1814
    下载: 导出CSV

    表  2  本文方法与其他方法的平均运行时间比较

    Table  2  The comparison of average running time between the proposed method and other methods

    算法 时间(s) 代码类型
    MSRA-test1000 PASCAL-S
    FT 0.080 0.111 MATLAB
    SR 0.024 0.030 MATLAB
    CA 20.587 22.299 MATLAB
    SF 0.138 0.217 MATLAB
    GR 0.636 0.905 MATLAB
    MR 0.559 0.759 MATLAB
    BSCA 1.101 1.475 MATLAB
    LRMR 7.288 9.674 MATLAB
    本文方法 6.916 9.154 MATLAB
    下载: 导出CSV

    表  3  FCNN分割的前景目标与本文最终分割得到的二值感兴趣区域的MAE比较

    Table  3  The comparison of MAE between the segmented foreground object by FCNN and the segmented binary ROI by the proposed method

    算法 MSRA-test1000 PASCAL-S
    FCNN高层先验知识 0.0531 0.1040
    本文方法(二值化) 0.0516 0.0964
    下载: 导出CSV

    表  4  本文方法与深度学习方法的指标比较

    Table  4  The comparison of evaluation indexs between the proposed method and deep learning methods

    算法 F-measure MAE
    RFCN 0.7468 -
    DS 0.7710 0.1210
    本文方法 0.7755 0.1814
    下载: 导出CSV
  • [1] Mahadevan V, Vasconcelos N. Saliency-based discriminant tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 1007-1013
    [2] Siagian C, Itti L. Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):300-312 doi: 10.1109/TPAMI.2007.40
    [3] 钱生, 陈宗海, 林名强, 张陈斌.基于条件随机场和图像分割的显著性检测.自动化学报, 2015, 41(4):711-724 http://www.aas.net.cn/CN/abstract/abstract18647.shtml

    Qian Sheng, Chen Zong-Hai, Lin Ming-Qiang, Zhang Chen-Bin. Saliency detection based on conditional random field and image segmentation. Acta Automatica Sinica, 2015, 41(4):711-724 http://www.aas.net.cn/CN/abstract/abstract18647.shtml
    [4] Sun J, Ling H B. Scale and object aware image retargeting for thumbnail browsing. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1511-1518
    [5] 张慧, 王坤峰, 王飞跃.深度学习在目标视觉检测中的应用进展与展望.自动化学报, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml

    Zhang Hui, Wang Kun-Feng, Wang Fei-Yue. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8):1289-1305 http://www.aas.net.cn/CN/abstract/abstract19104.shtml
    [6] Marchesotti L, Cifarelli C, Csurka G. A framework for visual saliency detection with applications to image thumbnailing. In:Proceedings of the IEEE 12th International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 2232-2239
    [7] Yang J M, Yang M H. Top-down visual saliency via joint CRF and dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(3):576-588 doi: 10.1109/TPAMI.2016.2547384
    [8] Li J, Rajan D, Yang J. Locality and context-aware top-down saliency. IET Image Processing, 2018, 12(3):400-407 doi: 10.1049/iet-ipr.2017.0251
    [9] Itti L, Kouch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259 doi: 10.1109/34.730558
    [10] Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA: IEEE, 2007. 1-8
    [11] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 1597-1604
    [12] Cheng M M, Zhang G X, Mitra N J, Huang X L, Hu S M. Global contrast based salient region detection. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 409-416
    [13] Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012. 733-740
    [14] Goferman S, Zelnikmanor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10):1915-1926 doi: 10.1109/TPAMI.2011.272
    [15] Yang C, Zhang L H, Lu H C. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Processing Letters, 2013, 20(7):637-640 doi: 10.1109/LSP.2013.2260737
    [16] Yang C, Zhang L H, Lu H C, Ruan X, Yang M H. Saliency detection via graph-based manifold ranking. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. Portland OR, USA: IEEE, 2013. 3166-3173
    [17] Qin Y, Lu H C, Xu Y Q, Wang H. Saliency detection via cellular automata. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015. 110-119
    [18] Yan J C, Zhu M Y, Liu H X, Liu Y C. Visual saliency detection via sparsity pursuit. IEEE Signal Processing Letters, 2010, 17(8):739-742 doi: 10.1109/LSP.2010.2053200
    [19] Lang C Y, Liu G C, Yu J, Yan S C. Saliency detection by multitask sparsity pursuit. IEEE Transactions on Image Processing, 2012, 21(3):1327-1338 doi: 10.1109/TIP.2011.2169274
    [20] Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence RI, USA: IEEE, 2012. 853-860
    [21] 李岳云, 许悦雷, 马时平, 史鹤欢.深度卷积神经网络的显著性检测.中国图象图形学报, 2016, 21(1):53-59 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201601007

    Li Yue-Yun, Xu Yue-Lei, Ma Shi-Ping, Shi He-Huan. Saliency detection based on deep convolutional neural network. Journal of Image and Graphics, 2016, 21(1):53-59 http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201601007
    [22] Wang L Z, Wang L J, Lu H C, Zhang P P, Ruan X. Saliency detection with recurrent fully convolutional networks. In: Proceedings of the Computer Vision-ECCV 2016. Lecture Notes in Computer Science, vol. 9908. Amsterdam, Netherlands: Springer, 2016. 825-841
    [23] Lee G, Tai Y W, Kim J. Deep saliency with encoded low level distance map and high level features. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 660-668
    [24] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston MA, USA: IEEE, 2015. 3431-3440
    [25] Simoncelli E P, Freeman W T. The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of International Conference on Image Processing. Washington DC, USA: IEEE, 1995. 444-447
    [26] 王晓红, 赵于前, 廖苗, 邹北骥.基于多尺度2D Gabor小波的视网膜血管自动分割.自动化学报, 2015, 41(5):970-980 http://www.aas.net.cn/CN/abstract/abstract18671.shtml

    Wang Xiao-Hong, Zhao Yu-Qian, Liao Miao, Zou Bei-Ji. Automatic segmentation for retinal vessel based on multi-scale 2D Gabor wavelet. Acta Automatica Sinica, 2015, 41(5):970-980 http://www.aas.net.cn/CN/abstract/abstract18671.shtml
    [27] Comaniciu D, Meer P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619 doi: 10.1109/34.1000236
    [28] Dong C, Loy C C, He K M, Tang X O. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307 doi: 10.1109/TPAMI.2015.2439281
    [29] Matan O, Burges C J C, LeCun Y, Denker J S. Multi-digit recognition using a space displacement neural network. In: Proceedings of Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann, 1992. 488-495
    [30] Wright J, Peng Y G, Ma Y, Ganesh A, Rao S. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In: Proceedings of Neural Information Processing Systems. Vancouver, British Columbia, Canada: NIPS, 2009. 2080-2088
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  4041
  • HTML全文浏览量:  1148
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 录用日期:  2018-02-26
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回