2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于类脑模块化神经网络的污水处理过程关键出水参数软测量

蒙西 乔俊飞 韩红桂

蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量. 自动化学报, 2019, 45(5): 906-919. doi: 10.16383/j.aas.2018.c170497
引用本文: 蒙西, 乔俊飞, 韩红桂. 基于类脑模块化神经网络的污水处理过程关键出水参数软测量. 自动化学报, 2019, 45(5): 906-919. doi: 10.16383/j.aas.2018.c170497
MENG Xi, QIAO Jun-Fei, HAN Hong-Gui. Soft Measurement of Key Effluent Parameters in Wastewater Treatment Process Using Brain-like Modular Neural Networks. ACTA AUTOMATICA SINICA, 2019, 45(5): 906-919. doi: 10.16383/j.aas.2018.c170497
Citation: MENG Xi, QIAO Jun-Fei, HAN Hong-Gui. Soft Measurement of Key Effluent Parameters in Wastewater Treatment Process Using Brain-like Modular Neural Networks. ACTA AUTOMATICA SINICA, 2019, 45(5): 906-919. doi: 10.16383/j.aas.2018.c170497

基于类脑模块化神经网络的污水处理过程关键出水参数软测量

doi: 10.16383/j.aas.2018.c170497
基金项目: 

国家自然科学基金 61622301

国家自然科学基金 61533002

北京市自然科学基金项目 4172005

详细信息
    作者简介:

    蒙西  北京工业大学博士研究生.主要研究方向为类脑计算, 神经网络结构优化设计.E-mail:mengxi@emails.bjut.edu.cn

    韩红桂  北京工业大学教授.主要研究方向为污水处理工艺复杂建模与控制, 神经网络分析与设计.E-mail:rechardhan@sina.com

    通讯作者:

    乔俊飞  北京工业大学教授.主要研究方向为智能控制, 神经网络分析与设计.本文通信作者.E-mail:junfeq@bjut.edu.cn

Soft Measurement of Key Effluent Parameters in Wastewater Treatment Process Using Brain-like Modular Neural Networks

Funds: 

National Natural Science Foundation of China 61622301

National Natural Science Foundation of China 61533002

Beijing Natural Science Foundation 4172005

More Information
    Author Bio:

    Ph. D. candidate at the Faculty of Information Technology, Beijing University of Technology. Her research interest covers brain-like computing and optima design of neural networks

    Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers modelling and control in waste water treatment process, analysis and design of neural networks

    Corresponding author: QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control, analysis and design of neural networks. Corresponding author of this paper
  • 摘要: 针对城市污水处理过程关键出水参数难以实时检测的问题,文中提出了一种基于类脑模块化神经网络(Brain-like modular neural network,BLMNN)的关键出水参数软测量方法.首先,基于互信息和专家知识进行任务分解,分析关键出水参数的相关变量,获取各出水参数的辅助变量.其次,通过模拟大脑皮层模块化分区结构,构建软测量子模型对各水质参数进行同步测量,降低软测量模型复杂度的同时保证了其精度.最后,通过基于实际数据的仿真实验验证了所提出方法的准确性和有效性.
    1)  本文责任编委 贺威
  • 图  1  BLMNN软测量模型策略图

    Fig.  1  Strategy diagram of BLMNN soft-measurement model

    图  2  类脑模块化神经网络结构图

    Fig.  2  Structure of brain-like modular neural network

    图  3  IErrCor RBF网络学习能力与结构的关系

    Fig.  3  Relationship between the learning ability and structure of IErrCor RBF network

    图  4  IErrCor RBF网络实际输出与期望输出对比

    Fig.  4  Prediction results of IErrCor RBF network

    图  5  IErrCor RBF网络预测误差曲线

    Fig.  5  Prediction errors of IErrCor RBF network

    图  6  出水BOD软测量子模型性能与结构间的关系

    Fig.  6  Relationship between structure and performance of the effluent BOD soft-measurement sub-model

    图  7  BLMNN模型出水BOD软测量测试结果

    Fig.  7  Testing results of BLMNN soft-measurement model on the effluent BOD

    图  8  BLMNN模型出水BOD软测量测试误差

    Fig.  8  Testing errors of BLMNN soft-measurement model on the effluent BOD

    图  9  出水TP软测量子模型性能与结构间的关系

    Fig.  9  Relationship between structure and performance of the effluent TP soft-measurement sub-model

    图  10  BLMNN模型出水TP软测量测试结果

    Fig.  10  Testing results of BLMNN soft-measurement model on the effluent TP

    图  11  BLMNN模型出水TP软测量测试误差

    Fig.  11  Testing errors of BLMNN soft-measurement model on the effluent TP

    图  12  不同算法对出水TP和出水BOD软测量测试结果

    Fig.  12  Testing results of different soft-measurement models on the effluent TP and effluent BOD

    表  1  软测量模型候选变量

    Table  1  Candidate variables of the soft-measurement model

    变量名单位变量名单位
    进水PH曝气池DOmg/L
    出水PH进水NH$_{4} $-Nmg/L
    进水SSmg/L出水NH$_{4} $-Nmg/L
    出水SSmg/L进水色度(稀释)倍数
    进水BODmg/L出水色度(稀释)倍数
    出水BODmg/L进水总氮mg/L
    进水CODmg/L出水总氮mg/L
    出水CODmg/L进水TPmg/L
    进水石油类mg/L出水TPmg/L
    出水石油类mg/L进水水温
    曝气池SVmg/L出水水温
    曝气池MLSSmg/L
    注:固体悬浮物浓度(Suspended solids, SS); 污泥沉降比(Settling velocity, SV); 混合悬浮固体浓度(Mixed liquid suspended solid, MLSS); 溶解氧(Dissolved oxygen, DO).
    下载: 导出CSV

    表  2  软测量模型变量相关性分析

    Table  2  Correlation analysis between variables

    变量名与出水BOD相关性变量名与出水TP相关性
    进水TP0.5419出水NH$_{4} $-N0.4461
    出水NH$_{4} $-N0.4484出水温度0.4272
    进水BOD(曝气池SV)0.3806 (0.2492)进水TP0.3308
    出水石油类0.3703DO0.2516
    曝气池MLSS0.2737出水油类0.1890
    进水油类0.2644进水油类0.1558
    下载: 导出CSV

    表  3  Mackey-Glass时间序列预测结果对比

    Table  3  Performance comparison of different algorithms on Mackey-Glass prediction

    算法训练时间(s)训练RMSE测试RMSE隐含层神经元数
    GDFNN87.12*/0.0118*11*
    GPFNN56.14*/0.0107*9*
    SVR0.1690.06100.063817
    IELM0.2330.03900.0365500
    PSO-RBF859.6*/0.0208*12*
    APSO-RBF832.7*/0.0135*11*
    IErrCor-RBF5.6830.00840.00845
    注: *表示参考原文给出的结果; /表示原文未给出结果.
    下载: 导出CSV

    表  4  不同算法对出水BOD和出水TP软测量统计结果对比

    Table  4  Testing results of different soft measurement models on the effluent TP and effluent BOD

    待测变量算法平均训练时间(s)平均测试时间(s)测试RMSE测试APE平均模型结构
    最大值最小值平均值最大值最小值平均值
    出水BODRBF12.19130.01111.32730.35870.73400.08940.02160.0441106
    GAP-RBF0.60870.03270.92660.81630.87410.05020.04740.048617
    IELM0.06730.03340.57460.43190.48310.03760.02980.0337400
    SVR0.01030.00190.47730.21240.28260.05570.02510.034841
    APSO-RBF211.64120.00460.51960.42700.45980.03270.02910.031213
    SCNN0.23610.00120.35760.23840.28450.02340.01490.017657
    BLMNN6.61940.00130.29920.22860.23670.01790.01450.016310
    出水TPRBF12.19130.01110.14170.04300.06970.22400.05410.0969106
    GAP-RBF1.00270.05550.19510.10760.14820.23310.14130.184334
    IELM0.08680.06530.09450.06540.07830.1290.09670.1105400
    SVR0.01250.00340.14220.05800.09500.22540.08510.143055
    APSO-RBF222.63490.005190.08220.05560.07110.11680.07590.103820
    SCNN0.21500.00230.09930.06940.08220.10840.08080.096442
    BLMNN2.70320.00080.04260.03540.03940.05650.04880.05245
    下载: 导出CSV
  • [1] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301-310 doi: 10.1038/nature06599
    [2] van Loosdrecht M C M, Brdjanovic D. Anticipating the next century of wastewater treatment. Science, 2014, 344(6191): 1452-1453 doi: 10.1126/science.1255183
    [3] 赵立杰, 袁德成, 柴天佑.基于多分类概率极限学习机的污水处理过程操作工况识别.化工学报, 2012, 63(10): 3173-3182 doi: 10.3969/j.issn.0438-1157.2012.10.024

    Zhao Li-Jie, Yuan De-Cheng, Chai Tian-You. Identification of wastewater operational conditions based on multi-classification probabilistic extreme learning machine. CIESC Journal, 2012, 63(10): 3173-3182 doi: 10.3969/j.issn.0438-1157.2012.10.024
    [4] Jin L Y, Zhang G M, Tian H F. Current state of sewage treatment in China. Water Research, 2014, 66: 85-98 doi: 10.1016/j.watres.2014.08.014
    [5] Chon K, Lee Y, Traber J, von Gunten U. Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection. Water research, 2013, 47(14): 5381-5391 doi: 10.1016/j.watres.2013.06.019
    [6] Huang M Z, Ma Y W, Wan J Q, Chen X H. A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process. Applied Soft Computing, 2015, 27: 1-10 doi: 10.1016/j.asoc.2014.10.034
    [7] Qin X S, Gao F R, Chen G H. Wastewater quality monitoring system using sensor fusion and machine learning techniques. Water Research, 2012, 46(4): 1133-1144 doi: 10.1016/j.watres.2011.12.005
    [8] Haimi H, Mulas M, Corona F, Vahala R. Data-derived soft-sensors for biological wastewater treatment plants: an overview. Environmental Modelling & Software, 2013, 47: 88-107 http://cn.bing.com/academic/profile?id=6a74b3b89ff298e1559db44505ff982b&encoded=0&v=paper_preview&mkt=zh-cn
    [9] Qiu Y, Liu Y Q, Huang D P. Date-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms. Journal of Chemical Engineering of Japan, 2016, 49(10): 925-936 doi: 10.1252/jcej.16we016
    [10] 余伟, 罗飞, 杨红, 许玉格.基于多神经网络的污水氨氮预测模型.华南理工大学学报(自然科学版), 2010, 38(12): 79-83 doi: 10.3969/j.issn.1000-565X.2010.12.015

    Yu Wei, Luo Fei, Yang Hong, Xu Yu-Ge. Multiple neural network-based model to predict ammonia nitrogen content in wastewater. Journal of South China University of Technology (Natural Science Edition), 2010, 38(12): 79-83 doi: 10.3969/j.issn.1000-565X.2010.12.015
    [11] 蒋朝辉, 董梦林, 桂卫华, 阳春华, 谢永芳.基于Bootstrap的高炉铁水硅含量二维预报.自动化学报, 2016, 42(5): 715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml

    Jiang Zhao-Hui, Dong Meng-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang. Two-dimensional prediction for silicon content of hot metal of blast furnace based on Bootstrap. Acta Automatica Sinica, 2016, 42(5): 715-723 http://www.aas.net.cn/CN/abstract/abstract18861.shtml
    [12] Cecati C, Kolbusz J, Różycki P, Siano P, Wilamowski B M. A novel RBF training algorithm for short-term electric load forecasting and comparative studies. IEEE Transactions on industrial Electronics, 2015, 62(10): 6519-6529 doi: 10.1109/TIE.2015.2424399
    [13] He S L, Li J. Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks. Applied Soft Computing, 2009, 9(3): 954-961 doi: 10.1016/j.asoc.2008.11.013
    [14] Ráduly B, Gernaey K V, Capodaglio A G, Mikkelsen P S, Henze M. Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environmental Modelling & Software, 2007, 22(8): 1208-1216 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023506643/
    [15] Bagheri M, Mirbagheri S A, Ehteshami M, Bagheri Z. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks. Process Safety and Environmental Protection, 2015, 93: 111-123 doi: 10.1016/j.psep.2014.04.006
    [16] 韩红桂, 乔俊飞, 薄迎春.基于信息强度的RBF神经网络结构设计研究.自动化学报, 2012, 38(7): 1083-1090 http://www.aas.net.cn/CN/abstract/abstract13727.shtml

    Han Hong-Gui, Qiao Jun-Fei, Bo Ying-Chun. On structure design for RBF neural network based on information strength. Acta Automatica Sinica, 2012, 38(7): 1083-1090 http://www.aas.net.cn/CN/abstract/abstract13727.shtml
    [17] Wan J Q, Huang M Z, Ma Y W, Gao W J, Wang Y, Zhang H P, et al. Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Applied Soft Computing, 2011, 11(3): 3238-3246 doi: 10.1016/j.asoc.2010.12.026
    [18] Li F J, Qiao J F, Han H G, Yang C L. A self-organizing cascade neural network with random weights for nonlinear system modeling. Applied Soft Computing, 2016, 42: 184-193 doi: 10.1016/j.asoc.2016.01.028
    [19] Han H G, Lu W, Hou Y, Qiao J F. An Adaptive-PSO-based self-organizing RBF neural network. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 104-117 doi: 10.1109/TNNLS.2016.2616413
    [20] 曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1): 212-222 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015

    Zeng Yi, Liu Cheng-Lin, Tan Tie-Niu. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1): 212-222 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015
    [21] Park H J, Friston K. Structural and functional brain networks: from connections to cognition. Science, 2013, 342(6158): 1238411 doi: 10.1126/science.1238411
    [22] Meng X, Rozycki P, Qiao J F, Wilamowski B M. Nonlinear system modeling using RBF networks for industrial application. IEEE Transactions on Industrial Informatics, 2018, 14(3): 931-940 doi: 10.1109/TII.2017.2734686
    [23] Fernandez de Canete J, del Saz-Orozco P, Baratti R, Mulas M, Ruano A, Garcia-Cerezo A. Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network. Expert Systems with Applications, 2016, 63: 8-19 doi: 10.1016/j.eswa.2016.06.028
    [24] 汤健, 柴天佑, 刘卓, 余文, 周晓杰.基于更新样本智能识别算法的自适应集成建模.自动化学报, 2016, 42(7): 1040-1052 http://www.aas.net.cn/CN/abstract/abstract18895.shtml

    Tang Jian, Chai Tian-You, Liu Zhuo, Yu Wen, Zhou Xiao-Jie. Adaptive ensemble modelling approach based on updating sample intelligent identification. Acta Automatica Sinica, 2016, 42(7): 1040-1052 http://www.aas.net.cn/CN/abstract/abstract18895.shtml
    [25] Xie T T, Yu H, Hewlett J, Rozycki P, Wilamowski B. Fast and efficient second-order method for training radial basis function networks. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4): 609-619 doi: 10.1109/TNNLS.2012.2185059
    [26] Wu S Q, Er M J, Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594 doi: 10.1109/91.940970
    [27] Han H G, Qiao J F. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm. IEEE Transactions on Fuzzy Systems, 2010, 18(6): 1129-1143 doi: 10.1109/TFUZZ.2010.2070841
    [28] Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273-297 http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200803006
    [29] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892 doi: 10.1109/TNN.2006.875977
    [30] Feng H M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing, 2006, 70(1-3): 241-251 doi: 10.1016/j.neucom.2006.03.007
    [31] Huang G B, Saratchandran P, Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(6): 2284-2292 doi: 10.1109/TSMCB.2004.834428
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  2833
  • HTML全文浏览量:  374
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-01
  • 录用日期:  2018-03-06
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回