2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人车辆轨迹规划与跟踪控制的统一建模方法

徐杨 陆丽萍 褚端峰 黄子超

徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799-807. doi: 10.16383/j.aas.2018.c170431
引用本文: 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799-807. doi: 10.16383/j.aas.2018.c170431
XU Yang, LU Li-Ping, CHU Duan-Feng, HUANG Zi-Chao. Unified Modeling of Trajectory Planning and Tracking for Unmanned Vehicle. ACTA AUTOMATICA SINICA, 2019, 45(4): 799-807. doi: 10.16383/j.aas.2018.c170431
Citation: XU Yang, LU Li-Ping, CHU Duan-Feng, HUANG Zi-Chao. Unified Modeling of Trajectory Planning and Tracking for Unmanned Vehicle. ACTA AUTOMATICA SINICA, 2019, 45(4): 799-807. doi: 10.16383/j.aas.2018.c170431

无人车辆轨迹规划与跟踪控制的统一建模方法

doi: 10.16383/j.aas.2018.c170431
基金项目: 

国家自然科学基金 51675390

国家自然科学基金 U1764262

清华大学汽车安全与节能国家重点实验室开发基金 KF1807

湖北省技术创新专项重大项目 2016AAA007

国家重点研究发计划 2018YFB0105004

详细信息
    作者简介:

    徐杨  武汉理工大学计算机科学与技术硕士研究生.主要研究方向为无人驾驶车辆的路径规划.E-mail:18657200328@163.com

    陆丽萍  博士, 武汉理工大学计算机科学与技术学院副教授.主要研究方向为车联网, 计算仿真, 嵌入式系统.E-mail:luliping@whut.edu.cn

    黄子超  武汉理工大学智能交通系统研究中心博士研究生.主要研究方向为自动驾驶车辆, 协同驾驶以及自动驾驶车辆测试方法.E-mail:hzc@itsc.cn

    通讯作者:

    褚端峰  博士, 武汉理工大学智能交通系统研究中心副教授.主要研究方向为智能网联汽车, 智能交通系统.本文通信作者.E-mail:chudf@whut.edu.cn

Unified Modeling of Trajectory Planning and Tracking for Unmanned Vehicle

Funds: 

National Natural Science Foundation of China 51675390

National Natural Science Foundation of China U1764262

the Science Fund of State Key Laboratory for Automotive Safety and Energy Conservation of Tsinghua University KF1807

the Major Project of Technological Innovation in Hubei Province 2016AAA007

National Key Research and Development Program of China 2018YFB0105004

More Information
    Author Bio:

      Master student at the School of Computer Science and Technology, Wuhan University of Technology. His main research interest is path planning of unmanned vehicles

      Ph. D., associate professor at the College of Computer Science and Technology, Wuhan University of Technology. Her research interest covers vehicle networking, computational simulation, and embedded system

      Ph. D. candidate at the Intelligent Transportation Systems Research Center, Wuhan University of Technology. His research interest covers autonomous vehicle, cooperative driving and automated vehicle test methods

    Corresponding author: CHU Duan-Feng   Ph. D., associate professor at the Intelligent Transportation Systems Research Center, Wuhan University of Technology. His research interest covers automated and connected vehicle and intelligent transportation systems. Corresponding author of this paper
  • 摘要: 无人车辆的轨迹规划与跟踪控制是实现自动驾驶的关键.轨迹规划与跟踪控制一般分为两个部分,即先根据车辆周边环境信息以及自车运动状态信息规划出参考轨迹,再依此轨迹来调节车辆纵横向输出以实现跟随控制.本文通过对无人车辆的轨迹规划与跟踪进行统一建模,基于行车环境势场建模与车辆动力学建模,利用模型预测控制中的优化算法来选择人工势场定义下的局部轨迹,生成最优的参考轨迹,并在实现轨迹规划的同时进行跟踪控制.通过CarSim与MATLAB/Simulink的联合仿真实验表明,该方法可在多种场景下实现无人车辆的动态避障.
    1)  本文责任编委 李力
  • 图  1  道路势场示意图

    Fig.  1  Sketch of road potential

    图  2  环境车的局部坐标系

    Fig.  2  Coordinate system of the environment vehicle

    图  3  环境车的纵向势场值随距离变化图

    Fig.  3  Longitudinal potential of the environment vehicle with respect to the relative distance

    图  4  环境车的势场示意图

    Fig.  4  Sketch of the environment vehicle$'$s potential

    图  5  各场景示意图

    Fig.  5  Sketch of each scenario

    图  6  各场景关键时刻势场分布图

    Fig.  6  Potential distributions at key moments in several scenarios

    图  7  各场景的被控车速度变化图

    Fig.  7  Speed variation diagram of the subject vehicle in several scenarios

    图  8  各场景的控制增量以及控制量变化图

    Fig.  8  Responses of the control increment and the control quantity variation in several scenarios

    图  9  仿真场景中被控车的轨迹、侧向加速度、横摆角、横摆角速度的响应图

    Fig.  9  Responses of the trajectory, lateral acceleration, yaw angle and yaw rate of the controlled vehicle in the simulation scenarios

    图  10  场景4的行车轨迹和轮胎侧偏角响应图

    Fig.  10  Responses of the trajectory and the slip angle in Scenario 4

    表  1  控制器参数

    Table  1  Controller parameters

    参数 单位 参数 单位
    $\sigma_{\rm lane}$, $A_{\rm lane}$ 0.8 $-$ $I_{z}$ 2 031 ${\rm kg}\cdot {\rm m}^{2}$
    $\sigma_{\rm car}$ 0.53 $-$ $m$ 1 231 ${\rm kg}$
    $A_{\rm road}$ 1 $-$ $a$, $b$ 1.04, 1.56 $\rm m$
    $A_{\rm car}$ 15 $-$ $\varepsilon$, $\kappa$ 2, 0.01 $-$
    $S_{\rm min}$ 3 ${\rm m}$ $C_{f}$ 61 224 $\rm N/rad$
    $\rho$ 0.3 $-$ $C_{r}$ 42 500 ${\rm N/rad}$
    $\lambda$ 0.5 $-$ $N_{p}$ 25 $-$
    $A_{\rm car, long}$ 10 $-$ $N_{c}$ 2 $-$
    下载: 导出CSV
  • [1] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 2011, 30(7):864-894 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1204.6453
    [2] 陈成, 何玉庆, 卜春光, 韩建达.基于四阶贝塞尔曲线的无人车可行轨迹规划.自动化学报, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml

    Chen Cheng, He Yu-Qing, Bu Chun-Guang, Han Jian-Da. Feasible trajectory generation for autonomous vehicles based on quartic Bézier curve. Acta Automatica Sinica, 2015, 41(3):486-496 http://www.aas.net.cn/CN/abstract/abstract18627.shtml
    [3] Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles. In:Proceedings of the 2001 American Control Conference. Arlington, VA, USA:IEEE, 2001. 43-49
    [4] Carvalho A, Gao Y, Lefevre S. Stochastic predictive control of autonomous vehicles in uncertain environments. In:Proceedings of the 12th International Symposium on Advanced Vehicle Control. Fuchu, Japan:IEEE, 2014. 712-719
    [5] 姜岩, 王琦, 龚建伟, 陈慧岩.无人驾驶车辆局部路径规划的时间一致性与鲁棒性研究.自动化学报, 2015, 41(3):518-527 http://www.aas.net.cn/CN/abstract/abstract18630.shtml

    Jiang Yan, Wang Qi, Gong Jian-Wei, Chen Hui-Yan. Research on temporal consistency and robustness in local planning of intelligent vehicles. Acta Automatica Sinica, 2015, 41(3):518-527 http://www.aas.net.cn/CN/abstract/abstract18630.shtml
    [6] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 1986, 5(1):90-98 doi: 10.1177/027836498600500106
    [7] Wang J Q, Wu J, Yang L. The driving safety field based on driver-vehicle-road interactions. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2203-2214 doi: 10.1109/TITS.2015.2401837
    [8] Wolf M T, Burdick J W. Artificial potential functions for highway driving with collision avoidance. In:Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA). Pasadena, CA, USA:IEEE, 2008. 3731-3736
    [9] Cao H T, Song X L, Huang Z Y, Pan L B. Simulation research on emergency path planning of an active collision avoidance system combined with longitudinal control for an autonomous vehicle. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2016, 230(12):1624-1653 doi: 10.1177/0954407015618533
    [10] Ji J, Khajepour A, Melek W W, Huang Y J. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 2017, 66(2):952-964 doi: 10.1109/TVT.2016.2555853
    [11] Abbas M A, Milman R, Eklund J M. Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles. Canadian Journal of Electrical and Computer Engineering, 2017, 40(1):12-22 https://ieeexplore.ieee.org/document/6901109
    [12] Park J M, Kim D W, Yoon Y S, Kim H J, Yi K S. Obstacle avoidance of autonomous vehicles based on model predictive control. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2009, 223(12):1499-1516 doi: 10.1243/09544070JAUTO1149
    [13] Mousavi M A, Heshmati Z, Moshiri B. LTV-MPC based path planning of an autonomous vehicle via convex optimization. In:Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE). Mashhad, Iran:IEEE, 2013. 1-7
    [14] Huang Z C, Wu Q, Ma J, Fan S Q. An APF and MPC combined collaborative driving controller using vehicular communication technologies. Chaos, Solitons & Fractals, 2016, 89:232-242 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=286a7c93ea663fb33c3546755a36aa2c
    [15] Yamamoto M, Koibuchi K, Fukada Y, Inagaki S. Vehicle stability control in limit cornering by active brake. JSAE Review, 1995, 16(3):323 https://www.sciencedirect.com/science/article/pii/038943049595150S
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  4066
  • HTML全文浏览量:  1076
  • PDF下载量:  1292
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-01
  • 录用日期:  2017-10-30
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回