2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高斯渐进滤波框架下的目标跟踪方法

郑婷婷 杨旭升 张文安 俞立

郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250-2258. doi: 10.16383/j.aas.2018.c170421
引用本文: 郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250-2258. doi: 10.16383/j.aas.2018.c170421
ZHENG Ting-Ting, YANG Xu-Sheng, ZHANG Wen-An, YU Li. A Target Tracking Method in Gaussian Progressive Filtering Framework. ACTA AUTOMATICA SINICA, 2018, 44(12): 2250-2258. doi: 10.16383/j.aas.2018.c170421
Citation: ZHENG Ting-Ting, YANG Xu-Sheng, ZHANG Wen-An, YU Li. A Target Tracking Method in Gaussian Progressive Filtering Framework. ACTA AUTOMATICA SINICA, 2018, 44(12): 2250-2258. doi: 10.16383/j.aas.2018.c170421

一种高斯渐进滤波框架下的目标跟踪方法

doi: 10.16383/j.aas.2018.c170421
基金项目: 

国家自然科学基金 U1709213

国家自然科学基金 61673351

浙江省自然科学基金 LZ15F030003

详细信息
    作者简介:

    郑婷婷  浙江工业大学信息工程学院硕士研究生.主要研究方向为移动目标跟踪, 信息融合估计和无线传感器网络.E-mail:dogtinger@163.com

    杨旭升   浙江工业大学信息工程学院助理研究员.主要研究方向为智能移动机器人、无线传感器网络和信息融合估计.E-mail:yxs921@yahoo.com

    张文安  浙江工业大学信息工程学院教授.主要研究方向为信息融合估计、网络化控制和智能移动机器人.E-mail:wazhang@zjut.edu.cn

    通讯作者:

    俞立   浙江工业大学信息工程学院教授.主要研究方向为信息融合估计、鲁棒控制和网络化控制系统.本文通信作者.E-mail:lyu@zjut.edu.cn

A Target Tracking Method in Gaussian Progressive Filtering Framework

Funds: 

National Natural Science Foundation of China U1709213

National Natural Science Foundation of China 61673351

Zhejiang Provincial Natural Science Foundation of China LZ15F030003

More Information
    Author Bio:

       M. S. student at the College of Information Engineering, Zhejiang University of Technology. Her research interest covers moving target tracking, information fusion estimation and wireless sensor networks

      Assistant professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers intelligent mobile robots, wireless sensor networks and information fusion estimation

      Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers information fusion estimation, networked control systems and intelligent mobile robots

    Corresponding author: YU Li    Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers wireless sensor networks, robust control and networked control systems. Corresponding author of this paper
  • 摘要: 本文研究了一类存在量测信息缺失情况的目标跟踪问题,提出了一种高斯渐进框架下的目标跟踪方法以实现移动目标的跟踪.考虑可能存在的传感器故障或失效问题,采用假设检验方式以删选错误的量测信息.针对非线性滤波问题,量测信息的缺失将可能引起线性化误差、数值计算误差的增大,从而破坏目标跟踪估计器的稳定性和收敛性.为此,对渐进无迹卡尔曼滤波(Progressive unscented Kalman filter,PUKF)方法进行改进,使其更好地处理量测信息缺失引起的线性化误差、数值计算误差增大的问题.另外,通过对改进PUKF(Modified PUKF,MPUKF)方法的理论分析,证明其可保证渐进过程中的状态估计误差有界.最后,通过一个目标跟踪仿真实例表明,MPUKF方法比传统的IUKF方法和PUKF方法具有更高的跟踪精度.
    1)  本文责任编委 鲁仁全
  • 图  1  多传感器目标跟踪系统示意图

    Fig.  1  Diagram of multi-sensor target tracking systems

    图  2  多传感器融合系统结构图

    Fig.  2  Structure of multiple sensor fusion systems

    图  3  量测信息缺失对线性化误差的影响

    Fig.  3  Linearization error caused by measurement loss

    图  4  似然函数与先验概率密度函数示意图

    Fig.  4  Diagram of likelihood function and prior probability density function

    图  5  同伦函数递推过程示意图

    Fig.  5  The homotopy function recursive process diagram

    图  6  各滤波器MC仿真${\rm LMSE_{pos}}$的误差分布曲线

    Fig.  6  ${\rm LMSE_{pos}}$ distribution from Monte Carlo runs

    图  7  各滤波器MC仿真${\rm LMSE_{vel}}$的误差分布曲线

    Fig.  7  ${\rm LMSE_{vel}}$ distribution from Monte Carlo runs

    表  1  各滤波器${\rm LMSE_{pos}}$与${\rm LMSE_{vel}}$的均值

    Table  1  Mean of LMSE$ _{\rm{pos}}$ and LMSE$_{\rm {vel}}$

    估计方法LMSE$_{\rm{pos}}$LMSE$_{\rm{vel}}$
    IUKF $\left( {N = 30, \Delta = 1} \right)$ $-$4.372 $-$7.894
    PUKF $\left( {N = 30, \Delta = 1{\rm{/}}30} \right)$ $-$4.981 $-$8.592
    MPUKF $\left( {N = 30, \Delta = 1{\rm{/}}30} \right)$ $-$5.191 $-$8.787
    下载: 导出CSV

    表  2  各滤波器平均执行时间

    Table  2  Average running time

    估计方法(执行参数)执行时间/s
    IUKF $\left( {N = 30, \Delta = 1} \right)$0.126
    PUKF $\left( {N = 30, \Delta = 1{\rm{/}}30} \right)$0.156
    MPUKF $\left( {N = 30, \Delta = 1{\rm{/}}30} \right)$0.108
    下载: 导出CSV
  • [1] 杨旭升, 张文安, 俞立.适用于事件触发的分布式随机目标跟踪方法.自动化学报, 2017, 43(8):1393-1401 http://www.aas.net.cn/CN/abstract/abstract19113.shtml

    Yang Xu-Sheng, Zhang Wen-An, Yu Li. Distributed tracking method for maneuvering targets with event-triggered mechanism. Acta Automatica Sinica, 2017, 43(8):1393-1401 http://www.aas.net.cn/CN/abstract/abstract19113.shtml
    [2] Yang X S, Zhang W A, Yu L, Xing K X. Multi-Rate distributed fusion estimation for sensor network-based target tracking. IEEE Sensors Journal, 2016, 16(5):1233-1242 doi: 10.1109/JSEN.2015.2497464
    [3] 熊志刚, 黄树彩, 赵炜, 苑智玮, 徐晨洋.均方根嵌入式容积粒子PHD多目标跟踪方法.自动化学报, 2017, 43(2):238-247 http://www.aas.net.cn/CN/abstract/abstract19002.shtml

    Xiong Zhi-Gang, Huang Shu-Cai, Zhao Wei, Yuan Zhi-Wei, Xu Chen-Yang. Square-root imbedded cubature particle PHD multi-target tracking algorithm. Acta Automatica Sinica, 2017, 43(2):238-247 http://www.aas.net.cn/CN/abstract/abstract19002.shtml
    [4] Zhang W A, Yang X S, Yu L. Sequential fusion estimation for RSS-based mobile robots localization with event-driven WSNs. IEEE Transactions on Industrial Informatics, 2016, 12(4):1519-1528 doi: 10.1109/TII.2016.2585350
    [5] 黄玉龙, 张勇刚, 李宁, 赵琳.一种改进的高斯近似滤波方法.自动化学报, 2016, 42(3):385-401 http://www.aas.net.cn/CN/abstract/abstract18828.shtml

    Huang Yu-Long, Zhang Yong-Gang, Li Ning, Zhao Lin. An improved Gaussian approximate filtering method. Acta Automatica Sinica, 2016, 42(3):385-401 http://www.aas.net.cn/CN/abstract/abstract18828.shtml
    [6] Julier S, Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions. Technical report, Robotics Research Group, Department of Engineering Science, University of Oxford, 1996
    [7] Julier S J, Uhlman J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs-e200801002
    [8] Zhan R H, Wan J W. Iterated unscented Kalman filter for passive target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1155-1163 doi: 10.1109/TAES.2007.4383605
    [9] Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transactions on Automatic Control, 1993, 38(2):294-297 doi: 10.1109/9.250476
    [10] Hanebeck U D, Briechle K, Rauh A. Progressive Bayes: a new framework for nonlinear state estimation. In: Proceedings Volume 5099, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2003. Orlando, Florida USA: SPIE, 2003. 256-267
    [11] Hanebeck U D, Steinbring J. Progressive Gaussian filtering based on Dirac Mixture approximations. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 1697-1704
    [12] Steinbring J, Hanebeck U D. LRKF revisited:the smart sampling Kalman filter (S2KF). Journal of Advances in Information Fusion, 2014, 9(2):106-123
    [13] Chlebek C, Hanebeck U D. Bayesian approach to direct pole estimation. In: Proceedings of the 2014 European Control Conference. Strasbourg, France: IEEE, 2014. 1061-1068
    [14] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269 doi: 10.1109/TAC.2009.2019800
    [15] Zhang L, Li S, Zhang E Z, Chen Q W. Robust measure of non-linearity-based cubature Kalman filter. IET Science, Measurement & Technology, 2017, 11(7):929-938 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac386da09116b4daa58363316e178f0f
    [16] Huang Y L, Zhang Y G, Li N, Zhao L. Gaussian approximate filter with progressive measurement update. In: Proceedings of the 2015 IEEE 54th Annual Conference on Decision and Control. Osaka, Japan: IEEE, 2016. 4344-4349
    [17] Boutayeb M, Rafaralahy H, Darouach M. Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Transactions on Automatic Control, 1997, 42(4):581-586 doi: 10.1109/9.566674
    [18] Boutayeb M, Aubry D. A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Transactions on Automatic Control, 1999, 44(8):1550-1556 doi: 10.1109/9.780419
    [19] Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering. Automatica, 2006, 42(2):261-270 doi: 10.1016/j.automatica.2005.10.004
    [20] Chang G B. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion. Journal of Geodesy, 2014, 88(4):391-401 doi: 10.1007/s00190-013-0690-8
    [21] Gibbs R G. New Kalman filter and smoother consistency tests. Automatica, 2013, 49(10):3141-3144 doi: 10.1016/j.automatica.2013.07.013
    [22] Huang S D, Dissanayake G. Convergence and consistency analysis for extended Kalman filter Based SLAM. IEEE Transactions on Robotics, 2007, 23(5):1036-1049 doi: 10.1109/TRO.2007.903811
    [23] Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion. Information Fusion, 2003, 4(3):201-215 doi: 10.1016/S1566-2535(03)00036-8
    [24] Tarn T J, Rasis Y. Observers for nonlinear stochastic systems. IEEE Transactions on Automatic Control, 1976, 21(4):441-448 doi: 10.1109/TAC.1976.1101300
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2062
  • HTML全文浏览量:  215
  • PDF下载量:  684
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-29
  • 录用日期:  2018-02-07
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回