2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机吊挂飞行系统的减摆控制设计

王诗章 鲜斌 杨森

王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计. 自动化学报, 2018, 44(10): 1771-1780. doi: 10.16383/j.aas.2018.c170413
引用本文: 王诗章, 鲜斌, 杨森. 无人机吊挂飞行系统的减摆控制设计. 自动化学报, 2018, 44(10): 1771-1780. doi: 10.16383/j.aas.2018.c170413
WANG Shi-Zhang, XIAN Bin, YANG Sen. Anti-swing Controller Design for an Unmanned Aerial Vehicle With a Slung-load. ACTA AUTOMATICA SINICA, 2018, 44(10): 1771-1780. doi: 10.16383/j.aas.2018.c170413
Citation: WANG Shi-Zhang, XIAN Bin, YANG Sen. Anti-swing Controller Design for an Unmanned Aerial Vehicle With a Slung-load. ACTA AUTOMATICA SINICA, 2018, 44(10): 1771-1780. doi: 10.16383/j.aas.2018.c170413

无人机吊挂飞行系统的减摆控制设计

doi: 10.16383/j.aas.2018.c170413
基金项目: 

国家自然科学基金 90916004

国家自然科学基金 91748121

天津市科技支撑计划重点项目 15ZCZDGX00810

天津市应用基础与前沿技术研究计划重点项目 14JCZDJC31900

国家自然科学基金 60804004

详细信息
    作者简介:

    王诗章  天津大学硕士研究生.主要研究方向为无人机的非线性控制.E-mail:wangshizhang@tju.edu.cn

    杨森  天津大学博士研究生.主要研究方向为无人机的非线性控制.E-mail:yangsen1991@tju.edu.cn

    通讯作者:

    鲜斌  天津大学教授.主要研究方向为非线性控制, 无人机系统, 实时控制系统.本文通信作者.E-mail:xbin@tju.edu.cn

Anti-swing Controller Design for an Unmanned Aerial Vehicle With a Slung-load

Funds: 

National Natural Science Foundation of China 90916004

National Natural Science Foundation of China 91748121

Key Project of Tianjin Science and Technology Support Program 15ZCZDGX00810

Key Project of Tianjin Application and Research Program in Cutting-edge Technology 14JCZDJC31900

National Natural Science Foundation of China 60804004

More Information
    Author Bio:

      Master student at Tianjin University. Her main research interest is nonlinear control of unmanned aerial vehicle

      Ph. D. candidate at Tianjin University. His main research interest is nonlinear control of unmanned aerial vehicle

    Corresponding author: XIAN Bin   Professor at Tianjin University. His research interest covers nonlinear control, unmanned aerial vehicle system, and real-time control system. Corresponding author of this paper
  • 摘要: 主要考虑了四旋翼无人机(Unmanned aerial vehicle,UAV)吊挂飞行系统的位置控制及负载摆动抑制的设计问题.在存在欠驱动特性以及未知系统参数的约束下,本文基于能量法设计了一种非线性控制策略,实现了对无人机位置的精确控制和飞行过程中负载摆动的快速抑制.基于Lyapunov方法的稳定性分析证明了闭环系统的稳定性,位置误差的收敛及摆动的抑制.实验结果表明本文提出的控制策略取得了较好的控制效果.
    1)  本文责任编委 孙富春
  • 图  1  四旋翼无人机吊挂飞行系统结构简图

    Fig.  1  Schematic of quadrotor UAV slung-load system

    图  2  四旋翼无人机吊挂飞行系统实验平台

    Fig.  2  Experiment testbed of quadrotor UAV slung-load system

    图  3  无人机位置$y(t), z(t)$及负载摆角$\theta(t)$

    Fig.  3  $y(t), z(t)$ of UAV and payload swing $\theta(t)$

    图  4  无人机控制输入$u_{y} (t), u_{z}(t)$

    Fig.  4  Control inputs $u_{y}(t), u_{z}(t)$ of UAV

    图  5  无人机滚转角$\phi(t)$

    Fig.  5  Roll angle $\phi(t)$ of UAV

    表  1  非线性控制器和LQR控制器调节时间对比

    Table  1  Comparison of the settling time between nonlinear controller and LQR controller

    调节时间 非线性控制器 LQR控制器
    $t_s$$_y$ 16 s 22 s
    $t_s$$_z$ 4 s 15 s
    $t_s$$_\theta$ 6 s 14 s
    下载: 导出CSV

    表  2  非线性控制器和LQR控制器稳态误差均值对比

    Table  2  Comparison of the steady-state mean error between nonlinear controller and LQR controller

    稳态误差均值 非线性控制器 LQR控制器
    $\bar{y}$ 0.0116 m 0.0529 m
    $\bar{z}$ 0.0088 m 0.0188 m
    $\bar{\theta}$ 0.2013 $^{\circ}$ 0.2448 $^{\circ}$
    下载: 导出CSV

    表  3  非线性控制器和LQR控制器稳态均方误差对比

    Table  3  Comparison of the steady-state mean square error between nonlinear controller and LQR controller

    稳态均方误差 非线性控制器 LQR控制器
    $\sigma_y$ 3.7716$\times10^{-4}$ 4.6072$\times10^{-4}$
    $\sigma_z$ 1.9433$\times10^{-4}$ 8.8264$\times10^{-5}$
    $\sigma_\theta$ 0.4890 0.4570
    下载: 导出CSV

    表  4  非线性控制器和LQR控制器稳态最大偏差对比

    Table  4  Comparison of the steady-state maximum deviation between nonlinear controller and LQR controller

    稳态最大偏差 非线性控制器 LQR控制器
    $e_y$$\mathrm {_m}$$\mathrm {_a}$$\mathrm {_x}$ 0.0440 m 0.1038 m
    $e_z$$\mathrm {_m}$$\mathrm {_a}$$\mathrm {_x}$ 0.0584 m 0.0557 m
    $e_\theta$$\mathrm {_m}$$\mathrm {_a}$$\mathrm {_x}$ 0.1989 $^{\circ}$ 0.9888 $^{\circ}$
    下载: 导出CSV
  • [1] 沈东, 魏瑞轩, 祁晓明, 关旭宁.基于MTPM和DPM的多无人机协同广域目标搜索滚动时域决策.自动化学报, 2014, 40(7):1391-1403 http://www.aas.net.cn/CN/abstract/abstract18410.shtml

    Shen Dong, Wei Rui-Xuan, Qi Xiao-Ming, Guan Xu-Ning. Receding horizon decision method based on MTPM and DPM for multi-UAVs cooperative large area target search. Acta Automatica Sinica, 2014, 40(7):1391-1403 http://www.aas.net.cn/CN/abstract/abstract18410.shtml
    [2] Zhao B, Xian B, Zhang Y, Zhang X. Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Transactions on Industrial Electronics, 2015, 62(5):2891-2902 doi: 10.1109/TIE.2014.2364982
    [3] 彭孝东, 张铁民, 李继宇, 陈瑜.基于传感器校正与融合的农用小型无人机姿态估计算法.自动化学报, 2015, 41(4):854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml

    Peng Xiao-Dong, Zhang Tie-Min, Li Ji-Yu, Chen Yu. Attitude estimation algorithm of agricultural small-UAV based on sensors fusion and calibration. Acta Automatica Sinica, 2015, 41(4):854-860 http://www.aas.net.cn/CN/abstract/abstract18659.shtml
    [4] Hao W, Xian B. Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonlinear Dynamics, 2017, 90(4):2813-2826 doi: 10.1007/s11071-017-3842-1
    [5] Chen H, Fang Y C, Sun N. A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dynamics, 2017, 89(2):1513-1524 doi: 10.1007/s11071-017-3531-0
    [6] Chen H, Fang Y C, Sun N. A swing constraint guaranteed MPC algorithm for underactuated overhead cranes. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2543-2555 doi: 10.1109/TMECH.2016.2558202
    [7] 孙宁, 方勇纯, 王鹏程, 张雪波.欠驱动三维桥式吊车系统自适应跟踪控制器设计.自动化学报, 2010, 36(9):1287-1294 http://www.aas.net.cn/CN/abstract/abstract17322.shtml

    Sun Ning, Fang Yong-Chun, Wang Peng-Cheng, Zhang Xue-Bo. Adaptive trajectory tracking control of underactuated 3-dimensional overhead crane systems. Acta Automatica Sinica, 2010, 36(9):1287-1294 http://www.aas.net.cn/CN/abstract/abstract17322.shtml
    [8] Tang S, Kumar V. Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 2216-2222 https://ieeexplore.ieee.org/document/7139492
    [9] Sreenath K, Michael N, Kumar V. Trajectory generation and control of a quadrotor with a cable-suspended load-A differentially-flat hybrid system. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 4888-4895 https://ieeexplore.ieee.org/document/6631275
    [10] Sreenath K, Lee T, Kumar V. Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: Proceedings of the 2013 IEEE 52nd Annual Conference on Decision and Control. Firenze, Italy: IEEE, 2013. 2269-2274 https://ieeexplore.ieee.org/document/6760219
    [11] Faust A, Palunko I, Cruz P, Fierro R, Tapia L. Learning swing-free trajectories for UAVs with a suspended load. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 4902-4909 https://ieeexplore.ieee.org/document/6631277
    [12] Dai S C, Lee T, Bernstein D S. Adaptive control of a quadrotor UAV transporting a cable-suspended load with unknown mass. In: Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control. Los Angeles, USA: IEEE, 2014. 6149-6154 http://www-personal.umich.edu/~dsbaero/library/QuadrotorRCACCDC2014.pdf
    [13] Nicotra M M, Garone E, Naldi R, Marconi L. Nested saturation control of an UAV carrying a suspended load. In: Proceedings of the 2014 American Control Conference. Portland, USA: IEEE, 2014. 3585-3590 https://ieeexplore.ieee.org/document/6859222
    [14] Rosales C, Soria C, Carelli R, Rossomando F. Adaptive dynamic control of a quadrotor for trajectory tracking. In: Proceedings of the 2017 International Conference on Unmanned Aircraft Systems. Miami, USA: IEEE, 2017. 547-553
    [15] Cardoso D N, Raffo G V, Esteban S. A robust adaptive mixing control for improved forward flight of a tilt-rotor UAV. In: Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems. Rio de Janeiro, Brazil: IEEE, 2016. 1432-1437
    [16] Liang X, Fang Y C, Sun N, Lin H. Nonlinear hierarchical control for unmanned quadrotor transportation systems. IEEE Transactions on Industrial Electronics, 2018, 65(4):3395-3405 doi: 10.1109/TIE.2017.2752139
    [17] 鲜斌, 张旭, 杨森.无人机吊挂飞行的非线性控制方法设计.控制理论与应用, 2016, 33(3):273-279 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201603001

    Xian Bin, Zhang Xu, Yang Sen. Nonlinear controller design for an unmanned aerial vehicle with a slung-load. Control Theory & Application, 2016, 33(3):273-279 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201603001
    [18] Sun N, Fang Y C, Chen H, He B. Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters:design and experiments. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2107-2119 doi: 10.1109/TMECH.2014.2364308
    [19] 方勇纯, 卢桂章.非线性系统理论.北京:清华大学出版社, 2009. 21-24

    Fang Yong-Chun, Lu Gui-Zhang. Nonlinear System Theory. Beijing:Tsinghua University Press, 2009. 21-24
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  2832
  • HTML全文浏览量:  475
  • PDF下载量:  992
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-24
  • 录用日期:  2018-02-15
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回