2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区间数的黄金湿法冶炼过程建模与优化研究

刘亚东 牛大鹏 常玉清 王福利 张永京

刘亚东, 牛大鹏, 常玉清, 王福利, 张永京. 基于区间数的黄金湿法冶炼过程建模与优化研究. 自动化学报, 2019, 45(5): 927-940. doi: 10.16383/j.aas.2018.c170401
引用本文: 刘亚东, 牛大鹏, 常玉清, 王福利, 张永京. 基于区间数的黄金湿法冶炼过程建模与优化研究. 自动化学报, 2019, 45(5): 927-940. doi: 10.16383/j.aas.2018.c170401
LIU Ya-Dong, NIU Da-Peng, CHANG Yu-Qing, WANG Fu-Li, ZHANG Yong-Jing. Study on Process Modelling and Optimizing Based on Interval Number for Gold Hydrometallurgy. ACTA AUTOMATICA SINICA, 2019, 45(5): 927-940. doi: 10.16383/j.aas.2018.c170401
Citation: LIU Ya-Dong, NIU Da-Peng, CHANG Yu-Qing, WANG Fu-Li, ZHANG Yong-Jing. Study on Process Modelling and Optimizing Based on Interval Number for Gold Hydrometallurgy. ACTA AUTOMATICA SINICA, 2019, 45(5): 927-940. doi: 10.16383/j.aas.2018.c170401

基于区间数的黄金湿法冶炼过程建模与优化研究

doi: 10.16383/j.aas.2018.c170401
基金项目: 

国家自然科学基金 61304121

国家自然科学基金 61673092

国家自然科学基金 61533007

中央高校基础科研业务费 N150404017

详细信息
    作者简介:

    刘亚东  东北大学信息科学与工程学院博士研究生.主要研究方向为复杂工业过程建模与优化控制.E-mail:lyd1204lyd@163.com

    常玉清  东北大学信息科学与工程学院教授.主要研究方向为间歇工业过程建模、监测与质量预测.E-mail:changyuqing@mail.neu.edu.cn

    王福利  东北大学信息科学与工程学院教授.主要研究方向为复杂工业过程建模、优化与故障诊断.E-mail:flwang@mail.neu.edu.cn

    张永京  东北大学信息科学与工程学院研究生.主要研究方向为复杂工业过程建模与优化控制.E-mail:386309092@qq.com

    通讯作者:

    牛大鹏  东北大学信息科学与工程学院副教授.主要研究方向为复杂工业过程建模与优化控制.本文通信作者.E-mail:niudapeng@ise.neu.edu.cn

Study on Process Modelling and Optimizing Based on Interval Number for Gold Hydrometallurgy

Funds: 

National Natural Science Foundation of China 61304121

National Natural Science Foundation of China 61673092

National Natural Science Foundation of China 61533007

Fundamental Research Funds for the Central Universities N150404017

More Information
    Author Bio:

     Ph. D. candidate at the College of Information Science and Engineering, Northeastern University. His interest research covers modelling and optimization control of complex industrial process

     Professor at the College of Information Science and Engineering, Northeastern University. Her research interest covers process modeling, monitoring and quality prediction in batch process

     Professor at the College of Information Science and Engineering, Northeastern University. His research interest covers modeling, optimization of complex system, and fault diagnosis

     Master student at the College of Information Science and Engineering, Northeastern University. His interest research covers modelling and optimization control of complex industrial process

    Corresponding author: NIU Da-Peng  Associate professor at the College of Information Science and Engineering, Northeastern University. His research interest covers modelling and optimization control of complex industrial process. Corresponding author of this paper
  • 摘要: 针对黄金湿法冶炼生产过程中某些关键变量不能准确在线测量,导致局部工序无法定量建模、难以基于定量模型实现过程优化控制的问题,提出一种基于区间数的过程分层优化方法.在对黄金湿法冶炼生产过程特点进行分析的基础上,提出了基于区间数的过程分层优化框架.基于专家知识和现场操作人员经验等信息,建立了调浆过程的模糊定性模型.结合氰化浸出和置换等工序的定量模型及调浆过程的定性模型,建立了以综合经济效益最大为优化目标的黄金湿法冶炼生产过程优化模型.针对模糊定性模型的每一输出模态,利用区间数代替无法检测关键变量,提出了基于区间优化和分层优化思想相结合的优化方法,实现了黄金湿法冶炼过程的优化.与传统全流程优化方法的仿真对比实验表明,所提方法在具有不确定性的流程工业生产过程优化中具有一定的应用价值.
    1)  本文责任编委 谢永芳
  • 图  1  湿法冶金工艺基本单元操作流程

    Fig.  1  Basic unit operations of hydrometallurgy process

    图  2  金氰化浸出过程原理示意图

    Fig.  2  Schematic diagram of gold cyanidation leaching

    图  3  脱水调浆变量变化图

    Fig.  3  Variable variation of dehydration mixing

    图  4  浸出率随矿浆浓度变化图

    Fig.  4  Trends of the leaching rate changing with pulp density

    图  5  基于知识的湿法冶金过程优化框架

    Fig.  5  Frame of process optimization based on knowledge for hydrometallurgy

    图  6  矿浆浓度E1与调浆水E2的隶属度函数

    Fig.  6  Membership functions of pulp density E1 and mixing water E2

    图  7  基于区间数的湿法冶金过程分层优化流程图

    Fig.  7  Flow chart of the process hierarchical optimization method based on interval number for hydrometallurgy

    图  8  基于区间数的分层优化结果

    Fig.  8  Results of the hierarchical optimization method based on interval number

    图  9  不同优化方法的性能比较

    Fig.  9  Performance comparisons of different optimization methods

    图  10  不同约束可能度水平下的优化结果

    Fig.  10  Results of the different constraints possibility degree levels

    图  11  不同约束可能度水平下的惩罚结果

    Fig.  11  Results of penalties under different constraints possibility degree levels

    表  1  调浆过程矿浆浓度模糊规则

    Table  1  The fuzzy rules for the pulp density of mixing process

    ΔM
    Cw NB NS ZE PS PB
    NB ZE PS PB PB PB
    NM ZE ZE PS PB PB
    NS NS ZE ZE PB PB
    Δq ZE NB NS ZE PS PB
    PS NB NB ZE ZE PS
    PM NB NB NS ZE ZE
    PB NB NB NB NS ZE
    下载: 导出CSV

    表  2  全流程优化模式库

    Table  2  Plant-wide optimization pattern base

    放矿量 调浆水 矿浆浓度 氰化钠添加量 锌粉添加量 综合经济效益
    PB ZE $Q_{{\rm cn}ij}^{\rm {ZE}}$ $Q_{\rm Zn}^{\rm {ZE}}$ $J_2^{\rm {PB, ZE}}=J_1^{\rm {ZE\ast}}-Q_{TJ}^{\rm {PB}}\cdot P_{TJ}$
    PB PS PS $Q_{{\rm cn}ij}^{\rm {PS}}$ $Q_{\rm Zn}^{\rm {PS}}$ $J_2^{\rm {PB, PS}}=J_1^{\rm {PS\ast}}-Q_{TJ}^{\rm {PS}}\cdot P_{TJ}$
    $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
    NB PB $Q_{{\rm cn}ij}^{\rm {PB}}$ $Q_{\rm Zn}^{\rm {PB}}$ $J_2^{\rm {PB, PB}}=J_1^{\rm {PB}\ast}-Q_{TJ}^{\rm {NB}}\cdot P_{TJ}$
    $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
    PB NB $Q_{{\rm cn}ij}^{\rm {NB}}$ $Q_{\rm Zn}^{\rm {NB}}$ $J_2^{\rm {NB, NB}}=J_1^{\rm {NB}\ast}-Q_{TJ}^{\rm {PB}}\cdot P_{TJ}$
    NB NS NS $Q_{{\rm cn}ij}^{\rm {NS}}$ $Q_{\rm Zn}^{\rm {NS}}$ $J_2^{\rm {NB, NS}}=J_1^{\rm {NS}\ast}-Q_{TJ}^{\rm {NS}}\cdot P_{TJ}$
    $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$
    NB ZE $Q_{{\rm cn}ij}^{\rm {ZE}}$ $Q_{\rm Zn}^{\rm {ZE}}$ $J_2^{\rm {NB, ZE}}=J_1^{\rm {ZE}\ast}-Q_{TJ}^{\rm {NB}}\cdot P_{TJ}$
    下载: 导出CSV

    表  3  模型过程变量及相关参数取值

    Table  3  Values of process variables in mechanistic model and relevant parameters

    变量 描述 取值 单位
    $Q_s$ 矿石流量 2540 $\rm{kg/h}$
    $D_{0, r}$ 初始固金品位 666.5 $\rm{mg/kg}$
    $D_{0, \rm{Au}}$ 初始液金品位 0.001 $\rm{mg/kg}$
    $C_{0, \rm{cn}}$ 初始氰根离子浓度 200 $\rm{mg/kg}$
    $P_{\rm {cn}}$ 氰化钠价格 12.8 $\rm{\yen/kg}$
    $P_{\rm {Zn}}$ 锌粉价格 22 $\rm{\yen/kg}$
    $\mu$ 返金比 0.63 --
    $Q_{{\rm cn}, \min}$ 氰化钠添加量最小值 0 $\rm{kg/h}$
    $Q_{{\rm cn}, \max}$ 氰化钠添加量最大值 1 000 $\rm{kg/h}$
    $Q_{{\rm Zn}, \min}$ 锌粉添加量最小值 0 $\rm{kg/h}$
    $Q_{{\rm Zn}, \max}$ 锌粉添加量最大值 10 $\rm{kg/h}$
    下载: 导出CSV

    表  4  优化结果最优模式库

    Table  4  Results of the optimal-pattern base

    $C_w$ NB NS ZE PS PB
    $x_{t1}(\%)$ [0.95340.9584] [0.96000.9617] [0.96070.9633] [0.96520.9682] [0.96520.9681]
    $x_{t2}(\%)$ [0.86900.8797] [0.87640.8810] [0.86850.8752] [0.86990.8789] [0.87090.8766]
    $x_{t3}(\%)$ 0.9995 0.9998 0.9996 0.9996 0.9997
    $Q_{{\rm cn}11}(\rm{kg/h})$ 22.2048 9.6823 15.9344 15.4914 1.1638
    $Q_{{\rm cn}12}(\rm{kg/h})$ 0.4992 11.9133 0.7235 2.5124 16.2312
    $Q_{{\rm cn}13}(\rm{kg/h})$ 0.4997 0.0075 3.6585 0.5003 0.5001
    $Q_{{\rm cn}21}(\rm{kg/h})$ 47.2695 35.3919 26.0632 23.9628 28.5547
    $Q_{{\rm cn}22}(\rm{kg/h})$ 23.9289 40.7431 20.6049 18.5669 9.5077
    $Q_{{\rm cn}23}(\rm{kg/h})$ 21.0326 12.4122 16.0905 19.3258 12.1461
    $Q_{\rm Zn}(\rm{kg/h})$ 0.3141 0.3154 0.3144 0.3143 0.3148
    $J_1^\ast(\rm{\yen/h})$ 13034.7729 13352.1095 13650.3817 13988.9083 14152.2650
    下载: 导出CSV

    表  5  全流程优化结果

    Table  5  Results of plant-wide optimization

    $\Delta M$ NB NS ZE PS PB
    $x_{t1}(\%)$ [0.95340.9584] [0.96000.9617] [0.96070.9633] [0.96520.9682] [0.96520.9681]
    $x_{t2}(\%)$ [0.86900.8797] [0.87640.8810] [0.86850.8752] [0.86990.8789] [0.87090.8766]
    $x_{t3}(\%)$ 0.9995 0.9998 0.9996 0.9996 0.9997
    $Q_{TJ}^{l}(\rm{t/h})$ 65.3102 70.3546 80.4522 70.8512 75.2547
    $Q_{{\rm cn}11}(\rm{kg/h})$ 22.2048 9.6823 15.9344 15.4914 1.1638
    $Q_{{\rm cn}12}(\rm{kg/h})$ 0.4992 11.9133 0.7235 2.5124 16.2312
    $Q_{{\rm cn}13}(\rm{kg/h})$ 0.4997 0.0075 3.6585 0.5003 0.5001
    $Q_{{\rm cn}21}(\rm{kg/h})$ 47.2695 35.3919 26.0632 23.9628 28.5547
    $Q_{{\rm cn}22}(\rm{kg/h})$ 23.9289 40.7431 20.6049 18.5669 9.5077
    $Q_{{\rm cn}23}(\rm{kg/h})$ 21.0326 12.4122 16.0905 19.3258 12.1461
    $Q_{\rm Zn}(\rm{kg/h})$ 0.3141 0.3154 0.3144 0.3143 0.3148
    $J_2^\ast(\rm{\yen/h})$ 12806.1872 13105.8684 13368.799 13740.9291 13888.87355
    下载: 导出CSV
  • [1] 李康, 王福利, 何大阔, 贾润达.基于数据的湿法冶金全流程操作量优化设定补偿方法.自动化学报, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtml

    Li Kang, Wang Fu-Li, He Da-Kuo, Jia Run-Da. A data-based compensation method for optimal setting of hydrometallurgical process. Acta Automatica Sinica, 2017, 43(6):1047-1055 http://www.aas.net.cn/CN/abstract/abstract19080.shtml
    [2] 贾润达.湿法冶金萃取过程组分浓度软测量方法的研究与应用[博士学位论文].东北大学, 中国, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10145-1015562284.htm

    Jia Run-Da. Research on soft sensor methods for component concentration in hydrometallurgy extraction process and its applications[Ph.D. dissertation], Northeastern University, China, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10145-1015562284.htm
    [3] 马恩杰, 柴天佑, 金忠新.确定选矿合理月综合生产指标的智能优化方法.系统工程学报, 2009, 24(2):238-242 http://d.old.wanfangdata.com.cn/Periodical/xtgcxb200902017

    Ma En-Jie, Chai Tian-You, Jin Zhong-Xin. Intelligent optimization methods for determining rational monthly comprehensive production indices of ore-dressing. Journal of Systems Engineering, 2009, 24(2):238-242 http://d.old.wanfangdata.com.cn/Periodical/xtgcxb200902017
    [4] Ding J L, Chai T Y, Wang H. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization. IEEE Transactions on Neural Networks, 2011, 22(3):408-419 doi: 10.1109/TNN.2010.2102362
    [5] Yu G, Chai T Y, Luo X C. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transactions on Evolutionary Computation, 2011, 15(4):487-514 doi: 10.1109/TEVC.2010.2073472
    [6] de Andrade Lima L R P, Hodouin D. Optimization of reactor volumes for gold cyanidation. Minerals Engineering, 2005, 18(17):671-679 http://www.sciencedirect.com/science/article/pii/S089268750500018X
    [7] Yuan Q Y, Wang F L, He D K, Jia R D, Wang C. Study on the plant-wide modeling of gold hydrometallurgical process. In: Proceedings of the 26th Chinese Control and Decision Conference. Changsha, China: IEEE, 2014. 4013-4018 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBDX201303003.htm
    [8] 白影春.一种求解大不确定性问题的区间优化方法及应用[硕士学位论文].湖南大学, 中国, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10532-2010237842.htm

    Bai Ying-Chun. An interval optimization method and application for solving problems under large uncertainty[Master dissertation], Hunan University, China, 2010 http://cdmd.cnki.com.cn/Article/CDMD-10532-2010237842.htm
    [9] Zhao C H, Gao F R, Yao Y, Wang F L. A robust calibration modeling strategy for analysis of interference-subject spectral data. AIChE Journal, 2010, 56(1):196-206 http://www.mendeley.com/research/robust-calibration-modeling-strategy-analysis-interference-subject-spectral-data/
    [10] Zhao C H. A quality-relevant sequential phase partition approach for regression modeling and quality prediction analysis in manufacturing processes. IEEE Transactions on Automation Science and Engineering, 2014, 11(4):983-991 doi: 10.1109/TASE.2013.2287347
    [11] Zhang J, Mao Z Z, Jia R D, He D K. Real time optimization based on a serial hybrid model for gold cyanidation leaching process. Minerals Engineering, 2015, 70:250-263 doi: 10.1016/j.mineng.2014.09.021
    [12] Pishvaee B, Munn A, Payne G S. A novel structural model for regulation of clathrin function. The EMBO Journal, 1997, 16(9):2227-2239 doi: 10.1093/emboj/16.9.2227
    [13] Wang X J, Yang H F, Qiu Z P. Interval analysis method for damage identification of structures. AIAA Journal, 2010, 48(6):1108-1116 doi: 10.2514/1.45325
    [14] Ma Y H, Liang Z C, Chen M, Hong J. Interval analysis of rotor dynamic response with uncertain parameters. Journal of Sound and Vibration, 2013, 332(16):3869-3880 doi: 10.1016/j.jsv.2013.03.001
    [15] He D K, Yuan Q Y, Wang F L, Zhao L P, Liu T, Jia R D. Plant-wide hierarchical optimization based on a minimum consumption model. The Canadian Journal of Chemical Engineering, 2016, 94(6):1158-1166 doi: 10.1002/cjce.v94.6
    [16] Zhang J, Mao Z Z, Jia R D. Real-time optimization based on SCFO for gold cyanidation leaching process. Chemical Engineering Science, 2015, 134:467-476 doi: 10.1016/j.ces.2015.05.020
    [17] Hu G H, Mao Z Z, He D K, Yang F. Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm. Computers and Chemical Engineering, 2011, 35(12):2611-2617 doi: 10.1016/j.compchemeng.2011.02.012
    [18] Precup R E, Hellendoorn H. A survey on industrial applications of fuzzy control. Computers in Industry, 2011, 62(3):213-226 doi: 10.1016/j.compind.2010.10.001
    [19] Zheng J M, Zhao S D, Wei S G. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press. Control Engineering Practice, 2009, 17(12):1398-1404 doi: 10.1016/j.conengprac.2009.07.001
    [20] 姜潮.基于区间的不确定性优化理论与算法[博士学位论文].湖南大学, 中国, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10532-2009084284.htm

    Jiang Chao. Theories and Algorithms of Uncertain Optimization Based on Interval[Ph.D. dissertation], Hunan University, China, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10532-2009084284.htm
    [21] 龚纯, 王正林.精通MATLAB最优化计算.北京:电子工业出版社, 2009. 296-299

    Gong Chun, Wang Zheng-Lin. To Be Proficient in Matlab Optimization Calculation. Beijing:Publishing House of Electronics Industry, 2009. 296-299
    [22] Venkatarayalu N V, Ray T. Optimum design of Yagi-Uda antennas using computational intelligence. IEEE Transactions on Antennas and Propagation, 2004, 52(7):1811-1818 doi: 10.1109/TAP.2004.831338
    [23] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer. In: Proceedings of the 2005 IEEE International Swarm Intelligence Symposium. Pasadena, CA, USA: IEEE, 2005. 124-129
    [24] 邢立宁, 陈英武.基于知识的智能优化引导方法研究进展.自动化学报, 2011, 37(11):1285-1289 http://www.aas.net.cn/CN/abstract/abstract17618.shtml

    Xing Li-Ning, Chen Ying-Wu. Research progress on intelligent optimization guidance approaches using knowledge. Acta Automatica Sinica, 2011, 37(11):1285-1289 http://www.aas.net.cn/CN/abstract/abstract17618.shtml
    [25] 李宝磊, 施心陵, 苟常兴, 吕丹桔, 安镇宙, 张榆锋.多元优化算法及其收敛性分析.自动化学报, 2015, 41(5):949-959 http://www.aas.net.cn/CN/abstract/abstract18669.shtml

    Li Bao-Lei, Shi Xin-Ling, Gou Chang-Xing, Lv Dan-Ju, An Zhen-Zhou, Zhang Yu-Feng. Multivariant optimization algorithm and its convergence analysis. Acta Automatica Sinica, 2015, 41(5):949-959 http://www.aas.net.cn/CN/abstract/abstract18669.shtml
    [26] 潘峰, 陈杰, 辛斌, 张娟.粒子群优化方法若干特性分析.自动化学报, 2009, 35(7):1010-1016 doi: 10.1016-j.immuni.2010.12.003/

    Pan Feng, Chen Jie, Xin Bin, Zhang Juan. Several characteristics analysis of particle swarm optimizer. Acta Automatica Sinica, 2009, 35(7):1010-1016 doi: 10.1016-j.immuni.2010.12.003/
    [27] 张丽平, 俞欢军, 陈德钊, 胡上序.粒子群优化算法的分析与改进.信息与控制, 2004, 33(5):513-517 doi: 10.3969/j.issn.1002-0411.2004.05.001

    Zhang Li-Ping, Yu Huan-Jun, Chen De-Zhao, Hu Shang-Xu. Analysis and improvement of particle swarm optimization algorithm. Information and Control, 2004, 33(5):513-517 doi: 10.3969/j.issn.1002-0411.2004.05.001
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  3821
  • HTML全文浏览量:  288
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 录用日期:  2017-12-23
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回