2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合平滑矩阵多变量椭圆分布的稀疏表示算法

邱虹 王万良 郑建炜

邱虹, 王万良, 郑建炜. 联合平滑矩阵多变量椭圆分布的稀疏表示算法. 自动化学报, 2019, 45(8): 1548-1563. doi: 10.16383/j.aas.2018.c170350
引用本文: 邱虹, 王万良, 郑建炜. 联合平滑矩阵多变量椭圆分布的稀疏表示算法. 自动化学报, 2019, 45(8): 1548-1563. doi: 10.16383/j.aas.2018.c170350
QIU Hong, WANG Wan-Liang, ZHENG Jian-Wei. Sparse Representation With Smoothed Matrix Multivariate Elliptical Distribution. ACTA AUTOMATICA SINICA, 2019, 45(8): 1548-1563. doi: 10.16383/j.aas.2018.c170350
Citation: QIU Hong, WANG Wan-Liang, ZHENG Jian-Wei. Sparse Representation With Smoothed Matrix Multivariate Elliptical Distribution. ACTA AUTOMATICA SINICA, 2019, 45(8): 1548-1563. doi: 10.16383/j.aas.2018.c170350

联合平滑矩阵多变量椭圆分布的稀疏表示算法

doi: 10.16383/j.aas.2018.c170350
基金项目: 

国家自然科学基金 61602413

宁波市软科学项目 2018A10024

浙江省科技计划项目 LGF19F020008

国家自然科学基金 61873240

浙江省教育厅一般项目 Y201840695

浙江省科技计划项目 2016C31084

浙江省自然科学基金 LY19F030016

浙江省自然科学基金 LY17F020001

详细信息
    作者简介:

    邱虹  浙江万里学院大数据与软件工程学院讲师.主要研究方向为模式识别, 图像处理.E-mail:qianzhihe.17@163.com

    郑建炜  浙江工业大学计算机科学与技术学院副教授.主要研究方向为机器学习, 模式识别.E-mail:zjw@zjut.edu.cn

    通讯作者:

    王万良  浙江工业大学计算机科学与技术学院教授.主要研究方向为人工智能, 模式识别.本文通信作者.E-mail:zjutwwl@zjut.edu.cn

Sparse Representation With Smoothed Matrix Multivariate Elliptical Distribution

Funds: 

National Natural Science Foundation of China 61602413

Soft Science Foundation of Ningbo City 2018A10024

Project of Science and Technology Plan of Zhejiang Province LGF19F020008

National Natural Science Foundation of China 61873240

General Project of Education Department of Zhejiang Province Y201840695

Project of Science and Technology Plan of Zhejiang Province 2016C31084

Zhejiang Provincial Natural Science Foundation LY19F030016

Zhejiang Provincial Natural Science Foundation LY17F020001

More Information
    Author Bio:

    Lecturer at the College of Big Data and Software Engineering, Zhejiang Wanli University. Her research interest covers pattern recognition and image processing

    Associate professor at the College of Computer Science and Technology, Zhejiang University of Technology. His research interest covers machine learning and pattern recognition

    Corresponding author: WANG Wan-Liang Professor at the College of Computer Science and Technology, Zhejiang University of Technology. His research interest covers artificial intelligence and pattern recognition. Corresponding author of this paper
  • 摘要: 处理部分光照和遮挡等噪声的图像重构及分类问题因其极具挑战而备受关注,该问题的解决很大程度上取决于对误差的描述,常见的方法以向量形式存储误差矩阵且假定其服从于独立同分布,忽视了图像数据的内部结构信息.针对该问题,本文提出一种联合平滑矩阵多变量椭圆分布的稀疏表示算法(Sparse representation with smoothed matrix multivariate elliptical distribution,SMED).该算法强调误差矩阵中各个像素间的依赖性并假定误差矩阵作为一个随机矩阵变量服从于矩阵多变量椭圆分布;之后,引入辅助变量光滑目标函数,使得模型易于获得全局最优解;最后,采用迭代加权最小二乘法优化求解模型.此外,文中对SMED算法的收敛性和复杂度进行了理论分析,并讨论了模型的参数敏感性.在AR、ExYaleB和PubFig三个公开数据集中的实验验证了所提算法具有鲁棒的鉴别力,且其综合性能明显优于经典算法.
    1)  本文责任编委 黎铭
  • 图  1  多元分布比较图(常数取${C}_i=1$, $i=1, 2, 3$)

    Fig.  1  The comparison chart of the multivariate distribution (where the constants are ${ C}_{i}=1$, $i=1, 2, 3$)

    图  2  不同参数$\mu_{{c}}$和$\rho$值下的SMED$_{11}$算法收敛值曲线

    Fig.  2  Convergence curves of SMED$_{11}$ algorithm on AR with different regularization parameters $\mu_{{c}}$ and $\rho$

    图  3  不同光照影响及墨镜和围巾遮挡下的人脸重构性能对比

    Fig.  3  The reconfiguration performance contrast of different algorithms under illuminition changes and sunglass or scraf occlusion

    图  4  不同像素污损程度下的人脸识别率对比

    Fig.  4  Comparison of recognition rates under the different pixel corruption levels

    图  5  不同遮挡程度下的人脸识别率对比

    Fig.  5  Comparison of recognition rates under the different occlusion levels

    图  6  PubFig中1人的训练样本和测试样本示例图

    Fig.  6  Sample images for one person from PubFig face database

    图  7  PubFig人脸库中不同算法的识别率对比

    Fig.  7  Comparison of recognition rates on PubFig database

    表  1  AR人脸库真实影响下不同算法的识别率对比(%)

    Table  1  Comparison of recognition rates on AR database (%)

    算法光照影响墨镜遮挡围巾遮挡
    SMED$_{11}$95.8374.6667.64
    SMED$_{1/21}$91.9377.1769.83
    SMED$_{3/22}$93.1672.6760.33
    SRC90.5068.8355.83
    CRC95.3369.6763.50
    RRC88.1771.1669.83
    FFS83.0065.5050.83
    HQ_A87.8370.0044.50
    HQ_M93.5175.8348.93
    下载: 导出CSV

    表  2  AR数据库中各算法测试时间对比(s)

    Table  2  Running time of competing algorithms on AR database (s)

    分类器测试时间
    SMED$_{11}$0.1703
    SMED$_{1/21}$0.1748
    SMED$_{3/22}$0.1648
    SRC0.0917
    CRC0.0041
    RRC3.2165
    FFS0.1738
    HQ_A4.3898
    HQ_M13.2725
    下载: 导出CSV

    表  3  ExYaleB、PubFig数据库中各算法测试时间对比(s)

    Table  3  Running time of competing algorithms on ExYaleB, PubFig database (s)

    分类器测试时间
    ExYaleBExYaleBExYaleBExYaleBPubFig
    (白色遮挡)(黑色遮挡)(baboon遮挡)(鲜花遮挡)
    SMED$_{11}$0.24290.25080.21910.23761.6705
    SMED$_{1/21}$0.34500.24520.25610.24451.7864
    SMED$_{3/22}$0.26380.24350.23180.21861.6425
    CRC0.00370.00450.00310.00350.0152
    RRC0.25100.23700.24260.23752.5819
    CESR0.32440.12760.29660.22402.3499
    HQ_M12.204911.753212.373211.64576.8705
    下载: 导出CSV
  • [1] Jalali S, Poor H V. Universal compressed sensing for almost lossless recovery. IEEE Transactions on Information Theory, 2017, 63(5): 2933-2953 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf10e8c14dfa411302b59ddd62239924
    [2] Hyder M, Mahata K. An approximate L0 norm minimization algorithm for compressed sensing. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. Taipei, China: IEEE, 2009. 3365-3368 https://www.researchgate.net/publication/224461335_An_approximate_L0_norm_minimization_algorithm_for_compressed_sensing
    [3] Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227 doi: 10.1109/TPAMI.2008.79
    [4] Yang J, Zhang L, Xu Y, Yang J Y. Beyond sparsity: the role of L1-optimizer in pattern classification. Pattern Recognition, 2012, 45(3): 1104-1118 doi: 10.1016/j.patcog.2011.08.022
    [5] Zhang L, Yang M, Feng X C. Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 471-478 https://www.researchgate.net/publication/221111435_Sparse_Representation_or_Collaborative_Representation_Which_Helps_Face_Recognition
    [6] Zhang H M, Yang J, Xie J C, Qian J J, Zhang B. Weighted sparse coding regularized nonconvex matrix regression for robust face recognition. Information Sciences, 2017, 394-395: 1-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c078613f1e6f52a08b1bba4b4f4be933
    [7] Yang G, Wang Y, Guo L. A sparser reduced set density estimator by introducing weighted l1 penalty term. Pattern Recognition Letters, 2015, 58: 15-22 doi: 10.1016/j.patrec.2015.01.016
    [8] Liu C L, Hsaio W H, Xiao B, Chen C Y, Wu W L. Maximum-margin sparse coding. Neurocomputing, 2017, 238: 340-350 doi: 10.1016/j.neucom.2017.01.071
    [9] Lu C W, Shi J P, Jia J Y. Online robust dictionary learning. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 415-422 https://www.researchgate.net/publication/261479300_Online_Robust_Dictionary_Learning
    [10] Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112 doi: 10.1109/TPAMI.2010.128
    [11] Naseem I, Togneri R, Bennamoun M. Robust regression for face recognition. Pattern Recognition, 2012, 45(1): 104-118 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3413675
    [12] Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO, USA: IEEE, 2011. 625-632 https://www.researchgate.net/publication/224254772_Robust_sparse_coding_for_face_recognition
    [13] Yang M, Zhang L, Yang J, Zhang D. Regularized robust coding for face recognition. IEEE Transactions on Image Processing, 2013, 22(5): 1753-1766 doi: 10.1109/TIP.2012.2235849
    [14] He R, Zheng W S, Hu B G. Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1561-1576 doi: 10.1109/TPAMI.2010.220
    [15] He R, Zheng W S, Tan T N, Sun Z N. Half-quadratic-based iterative minimization for robust sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 261-275 doi: 10.1109/TPAMI.2013.102
    [16] He R, Zheng W S, Hu B G, Kong X W. Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1): 35-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b50eb274beaffb3f9113cf3d0d7c964d
    [17] Kibria B M G, Haq M S. The multivariate linear model with matric-T error variables. Journal of Applied Statistical Sciences, 2000, 9(4): 277-290 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/001316446202200205
    [18] Basu S, Micchelli C A, Olsen P. Power exponential densities for the training and classification of acoustic feature vectors in speech recognition. Journal of Computational and Graphical Statistics, 2001, 10(1): 158-184 doi: 10.1198/10618600152418818
    [19] Liu M H. Multivariate Nonnormal Regression Models, Information Complexity, and Genetic Algorithms: A Three Way Hybrid for Intelligent Data Mining [Ph. D. dissertation]. University of Tennessee, USA, 2006.
    [20] Balakrishnan N, Hashorva E. Scale mixtures of Kotz–dirichlet distributions. Journal of Multivariate Analysis, 2013, 113: 48-58 doi: 10.1016/j.jmva.2011.08.012
    [21] Abdous B, Genest C, Rémillard B. Dependence properties of meta-elliptical distributions. Statistical Modeling and Analysis for Complex Data Problems. Boston, MA, USA: Springer, 2005. 1-15
    [22] Long C, You D H, Hu J, Wang G, Dong M L. Quick and effective multiple contingency screening algorithm based on long-tailed distribution. IET Generation, Transmission and Distribution, 2016, 10(1): 257-262 doi: 10.1049/iet-gtd.2015.0885
    [23] Chong C. Stochastic PDEs with heavy-tailed noise. Stochastic Processes and Their Applications, 2017, 127(7): 2262- 2280 doi: 10.1016/j.spa.2016.10.011
    [24] Sun Y, Babu P, Palomar D P. Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions. IEEE Transactions on Signal Processing, 2016, 64(14): 3576-3590 doi: 10.1109/TSP.2016.2546222
    [25] Liu M H, Bozdogan H. Multivariate regression models with power exponential random errors and subset selection using genetic algorithms with information complexity. European Journal of Pure and Applied Mathematics, 2008, 1(1): 4-37 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001561206
    [26] Sun Y, Babu P, Palomar D P. Robust estimation of structured covariance matrix for heavy-tailed distributions. In: Proceedings of the 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Brisbane, QLD, Australia: IEEE, 2015. 5693-5697 http://www.oalib.com/paper/4116400
    [27] Fang K T, Anderson T W. Statistical Inference in Elliptically Contoured and Related Distributions. New York, USA: Allerton Press, 1990.
    [28] Zhao T, Liu H. Calibrated precision matrix estimation for high-dimensional elliptical distributions. IEEE Transactions on Information Theory, 2014, 60(12): 7874-7887 doi: 10.1109/TIT.2014.2360980
    [29] Díaz-García J A, Gutiérrez-Jáimez R. Compound and scale mixture of matricvariate and matrix variate Kotz-type distributions. Journal of the Korean Statistical Society, 2010, 39(1): 75-82 doi: 10.1016/j.jkss.2009.04.004
    [30] Wai P S, Kun S S, Ismail M T, Ariffin S, Karim A. Model performance between linear vector autoregressive and Markov switching vector autoregressive models on modelling structural change in time series data. In: Proceedings of the 2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC). Ipon, Malaysia: IEEE, 2015. 379-383 https://ieeexplore.ieee.org/document/7594083/
    [31] Hsu D, Kakade S M, Zhang T. Robust matrix decomposition with sparse corruptions. IEEE Transactions on Information Theory, 2011, 57(11): 7221-7234 doi: 10.1109/TIT.2011.2158250
    [32] Lai M J, Xu Y Y, Yin W T. Improved iteratively reweighted least squares for unconstrained smoothed ℓq minimization. SIAM Journal on Numerical Analysis, 2013, 51(2): 927-957 doi: 10.1137/110840364
    [33] Li W Y. Visualizing network communities with a semi-definite programming method. Information Sciences, 2015, 321: 1-13 doi: 10.1016/j.ins.2015.05.037
    [34] Lin Q H, Xiao L. An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization. Computational Optimization and Applications, 2015, 60(3): 633-674 doi: 10.1007/s10589-014-9694-4
    [35] Goldstein T, O'Donoghue B, Setzer S, Baraniuk R. Fast alternating direction optimization methods. SIAM Journal on Imaging Sciences, 2014, 7(3): 1588-1623 doi: 10.1137/120896219
    [36] 许凯, 吴小俊, 尹贺峰.基于分布式低秩表示的子空间聚类算法.计算机研究与发展, 2016, 53(7): 1605-1611 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201607018

    Xu Kai, Wu Xiao-Jun, Yin He-Feng. Distributed low rank representation-based subspace clustering algorithm. Journal of Computer Research and Development, 2016, 53(7): 1605 -1611 http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201607018
    [37] Barrah E M, Safi S, Malaoui A. New technique for face recognition based on singular value decomposition (SVD). In: Proceedings of the 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech). Marrakech, Morocco: IEEE, 2016. 96-99 https://www.researchgate.net/publication/313545436_New_technique_for_face_recognition_based_on_Singular_Value_Decomposition_SVD
    [38] Chen K, Lv Q, Lu Y, Dou Y. Robust regularized extreme learning machine for regression using iteratively reweighted least squares. Neurocomputing, 2017, 230: 345-358 doi: 10.1016/j.neucom.2016.12.029
    [39] 李波, 卢春园, 冷成财, 金连宝.基于局部图拉普拉斯约束的鲁棒低秩表示聚类方法.自动化学报, 2015, 41(11): 1971-1980 http://www.aas.net.cn/CN/abstract/abstract18771.shtml

    Li Bo, Lu Chun-Yuan, Leng Cheng-Cai, Jin Lian-Bao. Robust low rank subspace clustering based on local graph Laplace constraint. Acta Automatica Sinica, 2015, 41(11): 1971-1980 http://www.aas.net.cn/CN/abstract/abstract18771.shtml
    [40] Benner P, Li R C, Truhar N. On the ADI method for Sylvester equations. Journal of Computational and Applied Mathematics, 2009, 233(4): 1035-1045 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1201.4779
    [41] Boyd S, Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge University Press, 2009.
    [42] Marshall A W, Olkin I, Arnold B C. Inequalities: Theory of Majorization and Its Applications (2nd edition). New York: Springer, 2011.
    [43] Lee K C, Ho J, Kriegman D J. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684-698 doi: 10.1109/TPAMI.2005.92
    [44] Kumar N, Berg A C, Belhumeur P N, Nayar S K. Attribute and simile classifiers for face verification. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 365-372
    [45] Wu J X, Brubaker S C, Mullin M D, Rehg J M. Fast asymmetric learning for cascade face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 369-382 doi: 10.1109/TPAMI.2007.1181
    [46] Gu J, Hu H, Li H. Local robust sparse representation for face recognition with single sample per person. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 547-554 doi: 10.1109/JAS.2017.7510658
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1525
  • HTML全文浏览量:  237
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 录用日期:  2017-10-30
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回