-
摘要: 本文旨在提出一种搏动式电磁血泵电控系统,使其能够保证血泵工作的稳定性和动力的充足性.论文首先根据电磁血泵的结构设计建立原理模型,计算模型结构的磁力以及泵血的驱动力等参数.通过理论计算确定电流大小与磁力的正比关系,结合由人体血压正常值确定的合力为1.383N,确定工作电流大小为1.5A.其次利用Proteus软件设计单片机控制电路,利用控制电路、加速度传感器和示波器等设备搭建实验台,并进行空载状态下的实验去确定磁体在血泵磁场中受力与运动的状况,以及磁体的加速度波形与通断电的关系.通过依次确定线圈L1、L4,线圈L2、L3,线圈L3、L4的工作时间分别为0.1s,0.03s,0.01s,得到磁体单向运动时间,根据运动的对称性确定运动周期从而达到设计目的.该血泵具有重要的应用前景,尤其对替代目前临床ECMO(Extracorporeal membrane oxygenation)设备的血泵装置意义重大.Abstract: To design an electric control system of electromagnetic pulsate blood pump and to verify its stability and power as it works. The principle model was established firstly, based on the structure design of this kind of blood pump to ensure parameters, such as the magnitude of the magnetic force and the driving force to pump blood. The magnetic force is proportional to the current. The resultant force of blood pump was calculated about 1.383N as it works normally. The working current of the pump was ensured 1.5A. Proteus was used to design extracorporeal membrane oxygenation (ECMO) MCU controller circuit then. Acceleration sensor, oscilloscope, and other equipment are used to do experiments in no-load condition, to obtain the force and motion state of the slider and the condition of coils and the acceleration waveforms. The working times were 0.1s, 0.03s, 0.01s as the working sequences of coils were L1 and L4, L2 and L3, L3 and L4, respectively. The time of its half-period was obtained, so was the whole term according to the symmetry of the work. The pulsate blood pump driven by direct-current electromagnetism reached the clinical requirement of extracorporeal membrane oxygenation, and the design was significant to the development of extracorporeal circulation blood pump.
-
Key words:
- Pulsate blood pump /
- magnetic force /
- electric control system /
- process control
1) 本文责任编委 贺威 -
表 1 磁力实验的因素水平
Table 1 Levels of magnetic test factors
水平 因素 线圈长度(m) 磁体长度(m) 线圈外径(m) 线圈匝数 符号 $H$ $h$ $R_2$ $N$ 1 0.01 0.04 0.0282 90 2 0.03 0.03 0.02 360 3 0.02 0.01 0.0323 180 4 0.04 0.02 0.0241 720 表 2 磁力实验结果及极差分析
Table 2 Magnetic test result and range analysis
实验号 列号 1 2 3 4 5 因素 线圈长度 磁体长度 线圈外径 线圈匝数 磁力(N) 1 1 1 1 1 1 3.518 2 1 2 2 2 2 16.566 3 1 3 3 3 3 3.249 4 1 4 4 4 4 26.327 5 2 1 2 3 4 4.423 6 2 2 1 4 3 15.090 7 2 3 4 1 2 1.237 8 2 4 3 2 1 6.026 9 3 1 3 4 2 19.538 10 3 2 4 3 1 5.271 11 3 3 1 2 4 5.721 12 3 4 2 1 3 2.558 13 4 1 4 2 3 6.774 14 4 2 3 1 4 1.443 15 4 3 2 4 1 8.647 16 4 4 1 3 2 2.611 $k_{1}$ 12.4151 8.5633 6.7352 2.1885 5.8658 $k_{2}$ 6.6939 9.5928 8.0486 8.7721 9.9879 $k_{3}$ 8.2721 4.7133 7.5639 3.8886 6.9177 $k_{4}$ 4.8689 9.3805 9.9021 17.4007 9.4786 $R$ 7.5463 4.8795 3.1669 15.2122 4.1221 表 3 正交实验结果方差分析
Table 3 Variance analysis of orthogonal test
来源 第Ⅲ类平方和 df 平均值平方 $F$ 显著性 模型 1 806.594$^{\rm a}$ 13 138.969 8.797 0.049 线圈长度 124.247 3 41.416 2.622 0.225 磁体长度 62.188 3 20.729 1.312 0.414 线圈外径 21.578 3 7.193 0.455 0.733 线圈匝数 558.522 3 186.174 11.785 0.036 误差 47.395 3 15.798 总计 1 853.988 16 a: R平方= 0.974 (调整的R平方= 0.864) 表 4 当${z}_{{Q}} =$ 0.02 m时不同电流产生的磁力
Table 4 Different magnetic force caused by different current when ${z}_{{Q}} =$ 0.02 m
$F$ (N) $I$ (A) 0.5 1 1.5 2 2.5 3 $z_{Q} =$ 0.02 m 0.93 1.86 2.79 3.71 4.64 5.56 表 5 在不同电流下实际测得磁力及磁体所受摩擦力
Table 5 Different magnetic force caused by different current and the friction on permanent magnet slider
$F$ (N) $I$ (A) 1 1.5 2 2.5 $F_{f} $ 1 1.35 2.26 3.35 3.81 0.35 2 1.39 2.19 3.19 3.81 0.35 3 1.37 2.28 3.1 3.8 0.21 4 1.32 1.95 3.25 3.75 0.34 5 1.41 2.1 3.21 3.74 0.22 6 1.37 1.97 3.15 3.76 0.25 7 1.35 2.28 3.35 3.67 0.19 8 1.41 2.1 3.26 3.9 0.38 9 1.36 2.15 3.35 3.65 0.35 10 1.35 2.12 3.21 3.71 0.34 11 1.45 2.28 3.36 3.95 0.25 12 1.32 1.95 3.15 4.15 0.36 13 1.39 1.95 3.21 3.76 0.25 14 1.36 2.15 3.35 3.75 0.37 15 1.41 2.14 3.3 3.9 0.2 16 1.35 2.09 3.15 3.87 0.34 17 1.31 2.09 3.4 3.75 0.35 18 1.36 2.16 3 3.85 0.25 19 1.38 2.28 3.29 3.79 0.2 20 1.35 2.1 3.25 3.71 0.34 表 6 血泵线圈通过电流与电压关系
Table 6 The relationship between current and voltage of blood pump coils
$I$ (A) $U$ (V) $U_{L1} $ $U_{L2} $ $U_{L3} $ $U_{L4} $ 3 6.7 6.4 6.2 6.5 2.9 6.6 6.3 6.1 6.2 2.8 6.5 6.1 5.9 6.2 2.7 6.5 5.9 5.7 6 2.6 6.1 5.6 5.5 5.8 2.5 5.8 5.6 5.4 5.6 2.4 5.5 5.4 5.2 5.4 2.3 5.4 5.2 5 5.3 2.2 5.1 5.1 4.8 5.1 2.1 5 4.9 4.7 4.8 2 4.5 4.8 4.5 4.4 1.9 4.4 4.6 4.2 4.3 1.8 4.1 4.3 3.9 4 1.7 3.9 4 3.7 3.9 1.6 3.6 3.8 3.5 3.8 1.5 3.4 3.5 3.4 3.6 1.4 3.2 3.4 3.1 3.1 1.3 3.2 3.4 2.8 3 1.2 2.7 3.1 2.5 2.7 1.1 2.5 2.8 2.1 2.6 1 2.2 2.5 1.9 2.5 0.9 2 2.2 1.6 2.2 0.8 1.8 1.9 1.3 1.9 0.7 1.6 1.7 1.2 1.5 0.6 1.3 1.4 1 1.2 0.5 1.1 0.8 0.9 1.1 表 7 血泵线圈工作时长
Table 7 The working time of blood pump coils
时间(s) 线圈 $L$1$L$4 $L$2$L$3 $L$3$L$4 $L$1$L$4 $L$2$L$3 $L$1$L$2 $L$1$L$4 1 0.1 0.03 0.01 0.1 0.03 1 -
[1] Unai S, Tanaka D, Ruggiero N, Hirose H, Cavarocchi N C. Acute myocardial infarction complicated by cardiogenic shock:an algorithm-based extracorporeal membrane oxygenation program can improve clinical outcomes. Artificial Organs, 2016, 40(3):261-269 doi: 10.1111/aor.12538 [2] 谭江浩, 葛斌, 方旭晨, 曹海涛, 王瀚立.磁耦合驱动搏动式血泵的可行性研究.医用生物力学, 2015, 30(5):458-462 http://d.old.wanfangdata.com.cn/Periodical/yyswlx201505013Tan Jiang-Hao, Ge Bin, Fang Xu-Chen, Cao Hai-Tao, Wang Han-Li. Feasibility study on magnetic coupling-driven pulsate blood pump. Journal of Medical Biomechanics, 2015, 30(5):458-462 http://d.old.wanfangdata.com.cn/Periodical/yyswlx201505013 [3] Richardson A C, Schmidt M, Bailey M, Pellegrino V A, Rycus P T, Pilcher D V. ECMO cardio-pulmonary resuscitation (ECPR), trends in survival from an international multicentre cohort study over 12-years. Resuscitation, 2017, 112:34-40 doi: 10.1016/j.resuscitation.2016.12.009 [4] Lee S, Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation (ECMO). Insights into Imaging, 2014, 5(6):731-742 doi: 10.1007/s13244-014-0357-x [5] Tan M G, He X H, Liu H L, Dong L, Wu X F. Design and analysis of a radial diffuser in a single-stage centrifugal pump. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1):500-511 doi: 10.1080/19942060.2016.1210027 [6] Nonaka K, Linneweber J, Yoshikawa M, Ichikawa S, Nose Y. The flexible inflow conduit for baylor gyro permanently implantable centrifugal blood pump as a biventricular assist device (BVAD) system. Journal of the Kyorin Medical Society, 2001, 32(3):167-173 [7] 谭卓, 谭建平, 刘云龙, 谭炜.大间隙磁力驱动轴流式血泵的电磁特性.中南大学学报(自然科学版), 2015, 46(1):99-106 http://cdmd.cnki.com.cn/Article/CDMD-10533-1014408753.htmTan Zhuo, Tan Jian-Ping, Liu Yun-Long, Tan Wei. Electromagnetic characteristics of large gap magnetic driving axial flow blood pump. Journal of Central South University (Science and Technology), 2015, 46(1):99-106 http://cdmd.cnki.com.cn/Article/CDMD-10533-1014408753.htm [8] Kafagy D H, Dwyer T W, McKenna K L, Mulles J P, Chopski S G, Moskowitz W B, Throckmorton A L. Design of axial blood pumps for patients with dysfunctional Fontan physiology:computational studies and performance testing. Artificial Organs, 2015, 39(1):34-42 doi: 10.1111/aor.2015.39.issue-1 [9] 许自豪, 杨明, 欧文初, 庄晓奇, 徐亮, 孟凡, 安大伟.基于数值模拟的血泵血液破坏性研究进展.中国医疗设备, 2016, 31(1):26-30, 12 doi: 10.3969/j.issn.1674-1633.2016.01.006Xu Zi-Hao, Yang Ming, Ou Wen-Chu, Zhuang Xiao-Qi, Xu Liang, Meng Fan, An Da-Wei. Advances in the investigation of numerical simulation-based blood damage of blood pumps. China Medical Devices, 2016, 31(1):26-30, 12 doi: 10.3969/j.issn.1674-1633.2016.01.006 [10] Yu H, Lai K, Lin S, Lee S. Design and drive control of novel pulsatile-flow left ventricular assist device. In: Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG). Beijing, China: IEEE, 2015. 1 [11] Robertson W, Cazzolato B, Zander A. Axial force between a thick coil and a cylindrical permanent magnet:optimizing the geometry of an electromagnetic actuator. IEEE Transactions on Magnetics, 2012, 48(9):2479-2487 doi: 10.1109/TMAG.2012.2194789 [12] Robertson W, Cazzolato B, Zander A. A simplified force equation for coaxial cylindrical magnets and thin coils. IEEE Transactions on Magnetics, 2011, 47(8):2045-2049 doi: 10.1109/TMAG.2011.2129524 [13] Babic S, Akyel C. Calculation of mutual inductance and magnetic force between two thick coaxial Bitter coils of rectangular cross section. IET Electric Power Applications, 2017, 11(3):441-446 doi: 10.1049/iet-epa.2016.0628 [14] Martínez J, Babic S, Akyel C. On evaluation of inductance, dc resistance, and capacitance of coaxial inductors at low frequencies. IEEE Transactions on Magnetics, 2014, 50(7): Article No.8401012 [15] Babic S I, Akyel C. Magnetic force between inclined circular loops (Lorentz approach). Progress in Electromagnetics Research B, 2012, 38:333-349 doi: 10.2528/PIERB12011501 [16] Babic S, Akyel C, Martinez J, Babic B. A new formula for calculating the magnetic force between two coaxial thick circular coils with rectangular cross-section. Journal of Electromagnetic Waves and Applications, 2015, 29(9):1181-1193 doi: 10.1080/09205071.2015.1035807 [17] 倪光正.工程电磁场原理.第2版.北京:高等教育出版社, 2009. 159-160Ni Guang-Zheng. Engineering Electromagnetic Field Principle (Second Edition). Beijing:Higher Education Press, 2009. 159-160 [18] 吴文通, 张喜玲, 刘朝晖.基于KEIL及PROTEUS的继电控制系统功能仿真与检测.电力系统保护与控制, 2015, 43(5):150-154 http://d.old.wanfangdata.com.cn/Periodical/jdq201505023Wu Wen-Tong, Zhang Xi-Ling, Liu Zhao-Hui. Functional simulation and detection in relay control system based on KEIL and PROTEUS. Power System Protection and Control, 2015, 43(5):150-154 http://d.old.wanfangdata.com.cn/Periodical/jdq201505023 [19] Yin Z J, Luo Q, Xiang K, Wang F. Based on the design of the single chip microcomputer numerical control constant current source. Advanced Materials Research, 2014, 926-930:1226-1229. doi: 10.4028/www.scientific.net/AMR.926-930 [20] 王崴, 张锐, 刘晓卫, 刘海平.变转速输入变量泵恒流量控制器设计.控制工程, 2015, 22(5):875-880 http://d.old.wanfangdata.com.cn/Periodical/jczdh201505016Wang Wei, Zhang Rui, Liu Xiao-Wei, Liu Hai-Ping. Constant flow controller design of axial piston variable displacement pump. Control Engineering of China, 2015, 22(5):875-880 http://d.old.wanfangdata.com.cn/Periodical/jczdh201505016 [21] 王冠, 陈建魁, 翟洁, 史明辉.基于放大器和温度传感器的温度采集方案.仪表技术与传感器, 2014, (11):66-69 doi: 10.3969/j.issn.1002-1841.2014.11.021Wang Guan, Chen Jian-Kui, Zhai Jie, Shi Ming-Hui. Temperature acquisition scheme based on amplifier and temperature sensor. Instrument Technique and Sensor, 2014, (11):66-69 doi: 10.3969/j.issn.1002-1841.2014.11.021 [22] Mojab A, Mazumder S K. Design and characterization of high-current optical darlington transistor for pulsed-power applications. IEEE Transactions on Electron Devices, 2017, 64(3):769-778 doi: 10.1109/TED.2016.2635632 [23] 崔柳, 董新洲.具有抗过渡电阻能力的多相补偿距离继电器.中国电机工程学报, 2014, 34(19):3220-3225 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201419023Cui Liu, Dong Xin-Zhou. Multiphase compensated distance relay insensitive to transition resistances. Proceedings of the CSEE, 2014, 34(19):3220-3225 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201419023