2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

搏动式电磁血泵电控系统的研究

陆通 葛斌 刘京京 张少伟 伍进平 张宸

陆通, 葛斌, 刘京京, 张少伟, 伍进平, 张宸. 搏动式电磁血泵电控系统的研究. 自动化学报, 2019, 45(7): 1392-1400. doi: 10.16383/j.aas.2018.c170348
引用本文: 陆通, 葛斌, 刘京京, 张少伟, 伍进平, 张宸. 搏动式电磁血泵电控系统的研究. 自动化学报, 2019, 45(7): 1392-1400. doi: 10.16383/j.aas.2018.c170348
LU Tong, GE Bin, LIU Jing-Jing, ZHANG Shao-Wei, WU Jin-Ping, ZHANG Chen. The Study for Electric Control System of Electromagnetic Pulsate Blood Pump. ACTA AUTOMATICA SINICA, 2019, 45(7): 1392-1400. doi: 10.16383/j.aas.2018.c170348
Citation: LU Tong, GE Bin, LIU Jing-Jing, ZHANG Shao-Wei, WU Jin-Ping, ZHANG Chen. The Study for Electric Control System of Electromagnetic Pulsate Blood Pump. ACTA AUTOMATICA SINICA, 2019, 45(7): 1392-1400. doi: 10.16383/j.aas.2018.c170348

搏动式电磁血泵电控系统的研究

doi: 10.16383/j.aas.2018.c170348
基金项目: 上海市大学生创新创业训练计划(SH2016118)资助
详细信息
    作者简介:

    陆通  上海理工大学医疗器械与食品学院硕士研究生.主要研究方向为精密医疗器械.E-mail:luuton@outlook.com

    刘京京  上海理工大学医疗器械与食品学院硕士研究生.主要研究方向为精密医疗器械.E-mail:jingajing1@hotmail.com

    张少伟   上海理工大学医疗器械与食品学院硕士研究生.主要研究方向为精密医疗器械.E-mail:2732758483@163.com

    伍进平   上海理工大学医疗器械与食品学院硕士研究生.主要研究方向为精密医疗器械.E-mail:wujinping@126.com

    张宸   上海理工大学上海理工大学光电信息与计算机工程学院电子信息工程专业本科生.主要研究方向为电子信息工程.E-mail:2453593746@163.com

    通讯作者:

    葛斌   上海理工大学医疗器械与食品学院副教授.主要研究方向为精密医疗器械.本文通信作者.E-mail:gb13992@hotmail.com

The Study for Electric Control System of Electromagnetic Pulsate Blood Pump

Funds: Supported by Shanghai College Students Innovative Training Program
More Information
    Author Bio:

      Master student at the School of Medical Instrument and Food, University of Shanghai for Science and Technology. His research interest covers precision medical instruments

      Master student at the School of Medical Instrument and Food, University of Shanghai for Science and Technology. His research interest covers precision medical instruments

      Master student at the School of Medical Instrument and Food, University of Shanghai for Science and Technology. His research interest covers precision medical instruments

      Master student at the School of Medical Instrument and Food, University of Shanghai for Science and Technology. His research interest covers precision medical instruments

      Undergraduate of electronics and information engineering at the School of Optional-Electronical and Computer Engineering, University of Shanghai for Science and Technology. His research interest covers electronics and information engineering

    Corresponding author: GE Bin  Associate professor at the School of Medical Instrument and Food, University of Shanghai for Science and Technology. His research interest covers precision medical instruments. Corresponding author of this paper
  • 摘要: 本文旨在提出一种搏动式电磁血泵电控系统,使其能够保证血泵工作的稳定性和动力的充足性.论文首先根据电磁血泵的结构设计建立原理模型,计算模型结构的磁力以及泵血的驱动力等参数.通过理论计算确定电流大小与磁力的正比关系,结合由人体血压正常值确定的合力为1.383N,确定工作电流大小为1.5A.其次利用Proteus软件设计单片机控制电路,利用控制电路、加速度传感器和示波器等设备搭建实验台,并进行空载状态下的实验去确定磁体在血泵磁场中受力与运动的状况,以及磁体的加速度波形与通断电的关系.通过依次确定线圈L1、L4,线圈L2、L3,线圈L3、L4的工作时间分别为0.1s,0.03s,0.01s,得到磁体单向运动时间,根据运动的对称性确定运动周期从而达到设计目的.该血泵具有重要的应用前景,尤其对替代目前临床ECMO(Extracorporeal membrane oxygenation)设备的血泵装置意义重大.
    1)  本文责任编委 贺威
  • 图  1  血泵工作原理图

    Fig.  1  Working principle of blood pump

    图  2  双线圈模型

    Fig.  2  Twin-solenoids model

    图  3  磁力随各因素变化的趋势图

    Fig.  3  Line chart of magnetic force variation with various factors

    图  4  磁力-距离关系图

    Fig.  4  The relationship between magnetic force and distance

    图  5  实验原理图

    Fig.  5  Schematic diagram of experiment

    图  6  示波器所观察到的信号和观察到持续0.1 s的信号

    Fig.  6  Output of acceleration waveform and output of 0.1 s sustained signal observed by oscilloscope

    图  7  示波器所观察到的信号

    Fig.  7  Output of signal observed by oscilloscope

    A1  控制电路

    A1  Control circuit

    A2  放大电路

    A2  Amplifying circuit

    A3  实验电路

    A3  Test circuit

    表  1  磁力实验的因素水平

    Table  1  Levels of magnetic test factors

    水平 因素 线圈长度(m) 磁体长度(m) 线圈外径(m) 线圈匝数
    符号 $H$ $h$ $R_2$ $N$
    1 0.01 0.04 0.0282 90
    2 0.03 0.03 0.02 360
    3 0.02 0.01 0.0323 180
    4 0.04 0.02 0.0241 720
    下载: 导出CSV

    表  2  磁力实验结果及极差分析

    Table  2  Magnetic test result and range analysis

    实验号 列号 1 2 3 4 5
    因素 线圈长度 磁体长度 线圈外径 线圈匝数 磁力(N)
    1 1 1 1 1 1 3.518
    2 1 2 2 2 2 16.566
    3 1 3 3 3 3 3.249
    4 1 4 4 4 4 26.327
    5 2 1 2 3 4 4.423
    6 2 2 1 4 3 15.090
    7 2 3 4 1 2 1.237
    8 2 4 3 2 1 6.026
    9 3 1 3 4 2 19.538
    10 3 2 4 3 1 5.271
    11 3 3 1 2 4 5.721
    12 3 4 2 1 3 2.558
    13 4 1 4 2 3 6.774
    14 4 2 3 1 4 1.443
    15 4 3 2 4 1 8.647
    16 4 4 1 3 2 2.611
    $k_{1}$ 12.4151 8.5633 6.7352 2.1885 5.8658
    $k_{2}$ 6.6939 9.5928 8.0486 8.7721 9.9879
    $k_{3}$ 8.2721 4.7133 7.5639 3.8886 6.9177
    $k_{4}$ 4.8689 9.3805 9.9021 17.4007 9.4786
    $R$ 7.5463 4.8795 3.1669 15.2122 4.1221
    下载: 导出CSV

    表  3  正交实验结果方差分析

    Table  3  Variance analysis of orthogonal test

    来源 第Ⅲ类平方和 df 平均值平方 $F$ 显著性
    模型 1 806.594$^{\rm a}$ 13 138.969 8.797 0.049
    线圈长度 124.247 3 41.416 2.622 0.225
    磁体长度 62.188 3 20.729 1.312 0.414
    线圈外径 21.578 3 7.193 0.455 0.733
    线圈匝数 558.522 3 186.174 11.785 0.036
    误差 47.395 3 15.798
    总计 1 853.988 16
    a: R平方= 0.974 (调整的R平方= 0.864)
    下载: 导出CSV

    表  4  当${z}_{{Q}} =$ 0.02 m时不同电流产生的磁力

    Table  4  Different magnetic force caused by different current when ${z}_{{Q}} =$ 0.02 m

    $F$ (N) $I$ (A)
    0.5 1 1.5 2 2.5 3
    $z_{Q} =$ 0.02 m 0.93 1.86 2.79 3.71 4.64 5.56
    下载: 导出CSV

    表  5  在不同电流下实际测得磁力及磁体所受摩擦力

    Table  5  Different magnetic force caused by different current and the friction on permanent magnet slider

    $F$ (N) $I$ (A)
    1 1.5 2 2.5 $F_{f} $
    1 1.35 2.26 3.35 3.81 0.35
    2 1.39 2.19 3.19 3.81 0.35
    3 1.37 2.28 3.1 3.8 0.21
    4 1.32 1.95 3.25 3.75 0.34
    5 1.41 2.1 3.21 3.74 0.22
    6 1.37 1.97 3.15 3.76 0.25
    7 1.35 2.28 3.35 3.67 0.19
    8 1.41 2.1 3.26 3.9 0.38
    9 1.36 2.15 3.35 3.65 0.35
    10 1.35 2.12 3.21 3.71 0.34
    11 1.45 2.28 3.36 3.95 0.25
    12 1.32 1.95 3.15 4.15 0.36
    13 1.39 1.95 3.21 3.76 0.25
    14 1.36 2.15 3.35 3.75 0.37
    15 1.41 2.14 3.3 3.9 0.2
    16 1.35 2.09 3.15 3.87 0.34
    17 1.31 2.09 3.4 3.75 0.35
    18 1.36 2.16 3 3.85 0.25
    19 1.38 2.28 3.29 3.79 0.2
    20 1.35 2.1 3.25 3.71 0.34
    下载: 导出CSV

    表  6  血泵线圈通过电流与电压关系

    Table  6  The relationship between current and voltage of blood pump coils

    $I$ (A) $U$ (V)
    $U_{L1} $ $U_{L2} $ $U_{L3} $ $U_{L4} $
    3 6.7 6.4 6.2 6.5
    2.9 6.6 6.3 6.1 6.2
    2.8 6.5 6.1 5.9 6.2
    2.7 6.5 5.9 5.7 6
    2.6 6.1 5.6 5.5 5.8
    2.5 5.8 5.6 5.4 5.6
    2.4 5.5 5.4 5.2 5.4
    2.3 5.4 5.2 5 5.3
    2.2 5.1 5.1 4.8 5.1
    2.1 5 4.9 4.7 4.8
    2 4.5 4.8 4.5 4.4
    1.9 4.4 4.6 4.2 4.3
    1.8 4.1 4.3 3.9 4
    1.7 3.9 4 3.7 3.9
    1.6 3.6 3.8 3.5 3.8
    1.5 3.4 3.5 3.4 3.6
    1.4 3.2 3.4 3.1 3.1
    1.3 3.2 3.4 2.8 3
    1.2 2.7 3.1 2.5 2.7
    1.1 2.5 2.8 2.1 2.6
    1 2.2 2.5 1.9 2.5
    0.9 2 2.2 1.6 2.2
    0.8 1.8 1.9 1.3 1.9
    0.7 1.6 1.7 1.2 1.5
    0.6 1.3 1.4 1 1.2
    0.5 1.1 0.8 0.9 1.1
    下载: 导出CSV

    表  7  血泵线圈工作时长

    Table  7  The working time of blood pump coils

    时间(s) 线圈
    $L$1$L$4 $L$2$L$3 $L$3$L$4 $L$1$L$4 $L$2$L$3 $L$1$L$2 $L$1$L$4
    1 0.1 0.03 0.01 0.1 0.03 1
    下载: 导出CSV
  • [1] Unai S, Tanaka D, Ruggiero N, Hirose H, Cavarocchi N C. Acute myocardial infarction complicated by cardiogenic shock:an algorithm-based extracorporeal membrane oxygenation program can improve clinical outcomes. Artificial Organs, 2016, 40(3):261-269 doi: 10.1111/aor.12538
    [2] 谭江浩, 葛斌, 方旭晨, 曹海涛, 王瀚立.磁耦合驱动搏动式血泵的可行性研究.医用生物力学, 2015, 30(5):458-462 http://d.old.wanfangdata.com.cn/Periodical/yyswlx201505013

    Tan Jiang-Hao, Ge Bin, Fang Xu-Chen, Cao Hai-Tao, Wang Han-Li. Feasibility study on magnetic coupling-driven pulsate blood pump. Journal of Medical Biomechanics, 2015, 30(5):458-462 http://d.old.wanfangdata.com.cn/Periodical/yyswlx201505013
    [3] Richardson A C, Schmidt M, Bailey M, Pellegrino V A, Rycus P T, Pilcher D V. ECMO cardio-pulmonary resuscitation (ECPR), trends in survival from an international multicentre cohort study over 12-years. Resuscitation, 2017, 112:34-40 doi: 10.1016/j.resuscitation.2016.12.009
    [4] Lee S, Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation (ECMO). Insights into Imaging, 2014, 5(6):731-742 doi: 10.1007/s13244-014-0357-x
    [5] Tan M G, He X H, Liu H L, Dong L, Wu X F. Design and analysis of a radial diffuser in a single-stage centrifugal pump. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1):500-511 doi: 10.1080/19942060.2016.1210027
    [6] Nonaka K, Linneweber J, Yoshikawa M, Ichikawa S, Nose Y. The flexible inflow conduit for baylor gyro permanently implantable centrifugal blood pump as a biventricular assist device (BVAD) system. Journal of the Kyorin Medical Society, 2001, 32(3):167-173
    [7] 谭卓, 谭建平, 刘云龙, 谭炜.大间隙磁力驱动轴流式血泵的电磁特性.中南大学学报(自然科学版), 2015, 46(1):99-106 http://cdmd.cnki.com.cn/Article/CDMD-10533-1014408753.htm

    Tan Zhuo, Tan Jian-Ping, Liu Yun-Long, Tan Wei. Electromagnetic characteristics of large gap magnetic driving axial flow blood pump. Journal of Central South University (Science and Technology), 2015, 46(1):99-106 http://cdmd.cnki.com.cn/Article/CDMD-10533-1014408753.htm
    [8] Kafagy D H, Dwyer T W, McKenna K L, Mulles J P, Chopski S G, Moskowitz W B, Throckmorton A L. Design of axial blood pumps for patients with dysfunctional Fontan physiology:computational studies and performance testing. Artificial Organs, 2015, 39(1):34-42 doi: 10.1111/aor.2015.39.issue-1
    [9] 许自豪, 杨明, 欧文初, 庄晓奇, 徐亮, 孟凡, 安大伟.基于数值模拟的血泵血液破坏性研究进展.中国医疗设备, 2016, 31(1):26-30, 12 doi: 10.3969/j.issn.1674-1633.2016.01.006

    Xu Zi-Hao, Yang Ming, Ou Wen-Chu, Zhuang Xiao-Qi, Xu Liang, Meng Fan, An Da-Wei. Advances in the investigation of numerical simulation-based blood damage of blood pumps. China Medical Devices, 2016, 31(1):26-30, 12 doi: 10.3969/j.issn.1674-1633.2016.01.006
    [10] Yu H, Lai K, Lin S, Lee S. Design and drive control of novel pulsatile-flow left ventricular assist device. In: Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG). Beijing, China: IEEE, 2015. 1
    [11] Robertson W, Cazzolato B, Zander A. Axial force between a thick coil and a cylindrical permanent magnet:optimizing the geometry of an electromagnetic actuator. IEEE Transactions on Magnetics, 2012, 48(9):2479-2487 doi: 10.1109/TMAG.2012.2194789
    [12] Robertson W, Cazzolato B, Zander A. A simplified force equation for coaxial cylindrical magnets and thin coils. IEEE Transactions on Magnetics, 2011, 47(8):2045-2049 doi: 10.1109/TMAG.2011.2129524
    [13] Babic S, Akyel C. Calculation of mutual inductance and magnetic force between two thick coaxial Bitter coils of rectangular cross section. IET Electric Power Applications, 2017, 11(3):441-446 doi: 10.1049/iet-epa.2016.0628
    [14] Martínez J, Babic S, Akyel C. On evaluation of inductance, dc resistance, and capacitance of coaxial inductors at low frequencies. IEEE Transactions on Magnetics, 2014, 50(7): Article No.8401012
    [15] Babic S I, Akyel C. Magnetic force between inclined circular loops (Lorentz approach). Progress in Electromagnetics Research B, 2012, 38:333-349 doi: 10.2528/PIERB12011501
    [16] Babic S, Akyel C, Martinez J, Babic B. A new formula for calculating the magnetic force between two coaxial thick circular coils with rectangular cross-section. Journal of Electromagnetic Waves and Applications, 2015, 29(9):1181-1193 doi: 10.1080/09205071.2015.1035807
    [17] 倪光正.工程电磁场原理.第2版.北京:高等教育出版社, 2009. 159-160

    Ni Guang-Zheng. Engineering Electromagnetic Field Principle (Second Edition). Beijing:Higher Education Press, 2009. 159-160
    [18] 吴文通, 张喜玲, 刘朝晖.基于KEIL及PROTEUS的继电控制系统功能仿真与检测.电力系统保护与控制, 2015, 43(5):150-154 http://d.old.wanfangdata.com.cn/Periodical/jdq201505023

    Wu Wen-Tong, Zhang Xi-Ling, Liu Zhao-Hui. Functional simulation and detection in relay control system based on KEIL and PROTEUS. Power System Protection and Control, 2015, 43(5):150-154 http://d.old.wanfangdata.com.cn/Periodical/jdq201505023
    [19] Yin Z J, Luo Q, Xiang K, Wang F. Based on the design of the single chip microcomputer numerical control constant current source. Advanced Materials Research, 2014, 926-930:1226-1229. doi: 10.4028/www.scientific.net/AMR.926-930
    [20] 王崴, 张锐, 刘晓卫, 刘海平.变转速输入变量泵恒流量控制器设计.控制工程, 2015, 22(5):875-880 http://d.old.wanfangdata.com.cn/Periodical/jczdh201505016

    Wang Wei, Zhang Rui, Liu Xiao-Wei, Liu Hai-Ping. Constant flow controller design of axial piston variable displacement pump. Control Engineering of China, 2015, 22(5):875-880 http://d.old.wanfangdata.com.cn/Periodical/jczdh201505016
    [21] 王冠, 陈建魁, 翟洁, 史明辉.基于放大器和温度传感器的温度采集方案.仪表技术与传感器, 2014, (11):66-69 doi: 10.3969/j.issn.1002-1841.2014.11.021

    Wang Guan, Chen Jian-Kui, Zhai Jie, Shi Ming-Hui. Temperature acquisition scheme based on amplifier and temperature sensor. Instrument Technique and Sensor, 2014, (11):66-69 doi: 10.3969/j.issn.1002-1841.2014.11.021
    [22] Mojab A, Mazumder S K. Design and characterization of high-current optical darlington transistor for pulsed-power applications. IEEE Transactions on Electron Devices, 2017, 64(3):769-778 doi: 10.1109/TED.2016.2635632
    [23] 崔柳, 董新洲.具有抗过渡电阻能力的多相补偿距离继电器.中国电机工程学报, 2014, 34(19):3220-3225 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201419023

    Cui Liu, Dong Xin-Zhou. Multiphase compensated distance relay insensitive to transition resistances. Proceedings of the CSEE, 2014, 34(19):3220-3225 http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201419023
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  1825
  • HTML全文浏览量:  258
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 录用日期:  2017-09-23
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回