2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个多维次成分并行提取算法及其收敛性分析

董海迪 何兵 刘刚 郑建飞

董海迪, 何兵, 刘刚, 郑建飞. 一个多维次成分并行提取算法及其收敛性分析. 自动化学报, 2019, 45(2): 427-433. doi: 10.16383/j.aas.2018.c170343
引用本文: 董海迪, 何兵, 刘刚, 郑建飞. 一个多维次成分并行提取算法及其收敛性分析. 自动化学报, 2019, 45(2): 427-433. doi: 10.16383/j.aas.2018.c170343
DONG Hai-Di, HE Bing, LIU Gang, ZHENG Jian-Fei. A Parallel Multiple Minor Components Extraction Algorithm and Its Convergence Analysis. ACTA AUTOMATICA SINICA, 2019, 45(2): 427-433. doi: 10.16383/j.aas.2018.c170343
Citation: DONG Hai-Di, HE Bing, LIU Gang, ZHENG Jian-Fei. A Parallel Multiple Minor Components Extraction Algorithm and Its Convergence Analysis. ACTA AUTOMATICA SINICA, 2019, 45(2): 427-433. doi: 10.16383/j.aas.2018.c170343

一个多维次成分并行提取算法及其收敛性分析

doi: 10.16383/j.aas.2018.c170343
基金项目: 

国家自然科学基金 61403399

详细信息
    作者简介:

    董海迪  火箭军工程大学空间工程系博士生.主要研究方向为自适应信号处理.E-mail:donghaidi123@163.com

    刘刚  火箭军工程大学空间工程系教授.主要研究方向为系统特征提取, 自适应信号处理.E-mail:liugangepgc@163.com

    郑建飞  火箭军工程大学控制工程系讲师.主要研究方向为预测与健康管理, 可靠性和预测维护.E-mail:zjf302@126.com

    通讯作者:

    何兵  火箭军工程大学空间工程系副教授.主要研究方向为系统特征提取, 自适应信号处理.本文通信作者.E-mail:hb830513@126.com

A Parallel Multiple Minor Components Extraction Algorithm and Its Convergence Analysis

Funds: 

National Natural Science Foundation of China 61403399

More Information
    Author Bio:

     Ph. D. candidate in the Department of Space Engineering, Rocket Force University of Engineering. His main research interest is adaptive signal processing

     Professor in the Department of Space Engineering, Rocket Force University of Engineering. His research interest covers system feature extracting and adaptive signal processing

     Lecturer in the Department of Automation Engineering, Rocket Force University of Engineering. His research interest covers prognostics and health management, reliability, and predictive maintenance

    Corresponding author: HE Bing  Associate professor in the Department of Space Engineering, Rocket Force University of Engineering. His research interest covers system feature extracting and adaptive signal processing. Corresponding author of this paper
  • 摘要: 次成分分析是信号处理领域内一项重要的分析工具.目前,多维次成分并行提取算法数量稀少,而且现有的算法在应用时还存在很多限制条件.针对上述问题,在分析研究OJAm次子空间跟踪算法的基础上,采用加权矩阵法提出了一种多维次成分提取算法,并采用递归最小二乘法对所提算法进行了简化,最后采用李雅普诺夫函数法确定了所提算法的全局收敛域.相比现有算法,所提算法对信号的特征值大小没有要求,也不需要在迭代过程中进行模值归一化操作,同时算法具有较低的计算复杂度.仿真实验表明:所提算法能够并行提取多维次成分,而且收敛速度要优于现有同类型算法.
    1)  本文责任编委 王占山
  • 图  1  WOJAm算法的DC曲线

    Fig.  1  DC curves of WOJAm algorithm

    图  2  WOJAm算法的Norm曲线

    Fig.  2  Norm curves of WOJAm algorithm

    图  3  RLS-WOJAm算法的DC曲线

    Fig.  3  DC curves of RLS-WOJAm algorithm

    图  4  RLS-WOJAm算法的Norm曲线

    Fig.  4  Norm curves of RLS-WOJAm algorithm

    图  5  第一个次成分的DC曲线

    Fig.  5  DC curves of the 1st MC

    图  6  第二个次成分的DC曲线

    Fig.  6  DC curves of the 2nd MC

    图  7  第三个次成分的DC曲线

    Fig.  7  DC curves of the 3rd MC

    图  8  三种算法的Norm曲线

    Fig.  8  Norm curves of the three algorithms

  • [1] Thameri M, Abed-Meraim K, Belouchrani A. Low complexity adaptive algorithms for Principal and Minor Component Analysis. Digital Signal Processing, 2013, 23(1):19-29 doi: 10.1016/j.dsp.2012.09.007
    [2] Arjomandi-Lari M, Karimi M. Generalized YAST algorithm for signal subspace tracking. Signal Processing, 2015, 117:82-95 doi: 10.1016/j.sigpro.2015.04.025
    [3] Jou Y D, Sun C M, Chen F K. Eigenfilter design of FIR digital filters using minor component analysis. In:9th International Conference on Information, Communications and Signal Processing. Tainan, China:IEEE, 2013. 1-5
    [4] Pattanadech N, Yutthagowith P. Fast curve fitting algorithm for parameter evaluation in lightning impulse test technique. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(5):2931-2936 doi: 10.1109/TDEI.2015.005165
    [5] Cirrincione G, Cirrincione M. Neural-Based Orthogonal Data Fitting:The EXIN Neural Networks. New York, USA:John Wiley and Sons, 2011
    [6] Kong X Y, Hu C H, Duan Z S. Neural networks for principal component analysis. Principal Component Analysis Networks and Algorithms. Singapore:Springer, 2017. 47-73
    [7] 高迎彬, 孔祥玉, 胡昌华, 侯立安.并行提取多个次成分的改进型Möller算法.控制与决策, 2017, 32 (3):493-497 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703015

    Gao Ying-Bin, Kong Xiang-Yu, Hu Chang-Hua, Hou Li-An. Modified Möller algorithm for multiple minor components extraction. Control and Decision, 2017, 32(3):493-497 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201703015
    [8] Oja E. Principal components, minor components, and linear neural networks. Neural Networks, 1992, 5(6):927-935 doi: 10.1016/S0893-6080(05)80089-9
    [9] Mathew G, Reddy V U. Orthogonal eigensubspace estimation using neural networks. IEEE Transactions on Signal Processing, 1994, 42(7):1803-1811 doi: 10.1109/78.298287
    [10] Jankovic M V, Reljin B. A new minor component analysis method based on Douglas-Kung-Amari minor subspace analysis method. IEEE Signal Processing Letters, 2005, 12(12):859-862 doi: 10.1109/LSP.2005.859497
    [11] Tan K K, Lv J C, Zhang Y, Huang S N. Adaptive multiple minor directions extraction in parallel using a PCA neural network. Theoretical Computer Science, 2010, 411 48:4200-4215 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7df63e683cd19c7aad37b172b356a6e9
    [12] Bartelmaos S, Abed-Meraim K. Fast adaptive algorithms for minor component analysis using Householder transformation. Digital Signal Processing, 2011, 21(6):667-678 doi: 10.1016/j.dsp.2011.05.001
    [13] Feng D Z, Zheng W X, Jia Y. Neural network learning algorithms for tracking minor subspace in high-dimensional data stream. IEEE Transactions on Neural Networks, 2005, 16(3):513-521 doi: 10.1109/TNN.2005.844854
    [14] Nguyen T D, Takahashi N, Yamada I. An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimensional Systems and Signal Processing, 2013, 24(3):457-483 doi: 10.1007/s11045-012-0172-9
    [15] Yang B. Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 1995, 43(1):95-107 doi: 10.1109/78.365290
    [16] Gao Y B, Kong X Y, Hu C H, Li H Z, Hou L A. A generalized information criterion for generalized minor component extraction. IEEE Transactions on Signal Processing, 2017, 65(4):947-959 doi: 10.1109/TSP.2016.2631444
    [17] Nguyen T D, Yamada I. Adaptive normalized quasi-newton algorithms for extraction of generalized Eigen-Pairs and their convergence analysis. IEEE Transactions on Signal Processing, 2013, 61(6):1404-1418 doi: 10.1109/TSP.2012.2234744
    [18] Lewis D W. Matrix Theory. Singapore:World Scientific, 2012
    [19] Miao Y, Hua Y. Fast subspace tracking and neural network learning by a novel information criterion. IEEE Transactions on Signal Processing, 1998, 46(7):1967-1979 doi: 10.1109/78.700968
    [20] Gao Y B, Kong X Y, Hu C H, Zhang H H, Hou L A. Convergence analysis of Möller algorithm for estimating minor component. Neural Processing Letters, 2014, 42(2):355-368 doi: 10.1007/s11063-014-9360-y
    [21] Kong X Y, Hu C H, Ma H G, Han C Z. A unified self-stabilizing neural network algorithm for principal and minor components extraction. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2):185-198 doi: 10.1109/TNNLS.2011.2178564
  • 加载中
图(8)
计量
  • 文章访问数:  1656
  • HTML全文浏览量:  192
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-21
  • 录用日期:  2017-10-11
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回