-
摘要: 模糊熵(Fuzzy entropy,FuzzyEn)是衡量时间序列在维数变化时产生新模式的概率,反映时间序列复杂性和无规则程度的参数指标.本文针对传统模糊熵算法只针对时间信号序列进行总体分析,忽略了瞬时信号变化的问题,提出了一种改进模糊熵的算法.算法将指数函数的宽度进行了优化设置,设置为0.15倍一阶差分时间序列的标准差,以此保证充分提取时间序列瞬时复杂性特征.与传统模糊熵相比,改进模糊熵包含更多时间模式信息.基于改进模糊熵结合锁相位算法,分析孤独症儿童脑电信号(Electroencephalogram,EEG)复杂性与同步性,结果表明:孤独症(Autism spectrum disorders,ASD)前颞叶的脑电信号同步性下降、复杂性降低,具有显著性差异(P < 0.05).Abstract: Fuzzy entropy (FuzzyEn) is used to measure the probability of a new model when the dimension of the time series changes, and to represent the complexity and irregularity of time series. Traditional FuzzyEn only analyzes the signal sequence in a period of time, ignoring the signal changes in each time series. Focusing on this problem, we proposed an improved FuzzyEn algorithm, which sets the width of the exponential function to 0.15 times the standard deviation of the first-order difference time series. Compared with the traditional FuzzyEn, the improved FuzzyEn contains more time pattern information. Electroencephalogram (EEG) signals of autism spectrum disorders (ASD) are analyzed based on the improved FuzzyEn combined with phase locking value. The results showed that synchronization in the anterior temporal lobe of the brain decreases in ASD and the complexity is reduced (P < 0.05).1) 本文责任编委 张学工
-
表 1 两种特征获得的识别率
Table 1 The classification accuracy obtained by different features
特征向量 改进模糊熵 传统模糊熵 正确率 86.67 46.67 测试运行时间 0.39 3.68 -
[1] American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders:DSM-5 (5th Edition). Washington D.C., USA:American Psychiatric Publishing, 2013. 1-991 [2] Belmonte M K, Allen G, Beckel-Mitchener A, Boulanger L M, Carper R A, Webb S J. Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 2004, 24 (42):9228-9231 doi: 10.1523/JNEUROSCI.3340-04.2004 [3] Ozonoff S, Young G S, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, Bryson S, Carver L J, Constantino J N, Dobkins K, Hutman T, Iverson J M, Landa R, Rogers S J, Sigman M, Stone W L. Recurrence risk for autism spectrum disorders:a baby siblings research consortium study. Pediatrics, 2011, 128 (3):e488-e495 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3164092 [4] Cherkassky V L, Kana R K, Keller T A, Just M A. Functional connectivity in a baseline resting-state network in autism. NeuroReport, 2006, 17 (16):1687-1690 doi: 10.1097/01.wnr.0000239956.45448.4c [5] Greimel E, Nehrkorn B, Schulte-Rüther M, Fink G R, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff S B. Changes in grey matter development in autism spectrum disorder. Brain Structure and Function, 2013, 218 (4):929-942 doi: 10.1007/s00429-012-0439-9 [6] Kana R K, Keller T A, Cherkassky V L, Minshew N J, Just M A. Sentence comprehension in autism:thinking in pictures with decreased functional connectivity. Brain, 2006, 129 (9):2484-2493 doi: 10.1093/brain/awl164 [7] Coben R, Clarke A R, Hudspeth W, Barry R J. EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 2008, 119 (5):1002-1009 doi: 10.1016/j.clinph.2008.01.013 [8] Duffy F H, Als H. A stable pattern of EEG spectral coherence distinguishes children with autism from neuro-typical controls-a large case control study. BMC Medicine, 2012, 10:Article No.64 doi: 10.1186/1741-7015-10-64 [9] Lazarev V V, Pontes A, Mitrofanov A A, deAzevedo L C. Reduced interhemispheric connectivity in childhood autism detected by electroencephalographic photic driving coherence. Journal of Autism and Developmental Disorders, 2015, 45 (2):537-547 doi: 10.1007/s10803-013-1959-8 [10] Jaime M, McMahon C M, Davidson B C, Newell L C, Mundy P C, Henderson H A. Brief report:reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 2016, 46 (4):1477-1489 doi: 10.1007/s10803-015-2667-3 [11] 雷敏, 孟光, 张文明, Sarkar N.基于虚拟开车环境的自闭症儿童脑电样本熵.物理学报, 2016, 65 (10):Article No.108701 http://d.old.wanfangdata.com.cn/Periodical/wlxb201610043Lei Min, Meng Guang, Zhang Wen-Ming, Sarkar N. Sample entropy of electroencephalogram for children with autism based on virtual driving game. Acta Physica Sinica, 2016, 65 (10):Article No.108701 http://d.old.wanfangdata.com.cn/Periodical/wlxb201610043 [12] Lei M, Meng G, Zhang W M, Wade J, Sarkar N. Symplectic entropy as a novel measure for complex systems. Entropy, 2016, 18 (11):Article No.412 doi: 10.3390/e18110412 [13] Zavala-Yoé R, Ramírez-Mendoza R, Cordero L M. Novel way to investigate evolution of children refractory epilepsy by complexity metrics in massive information. SpringerPlus, 2015, 4:Article No.437 doi: 10.1186/s40064-015-1173-6 [14] Liang S F, Wang H C, Chang W L. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP Journal on Advances in Signal Processing, 2010, 2010:Article No.853434 doi: 10.1155/2010/853434 [15] Wang J, Barstein J, Ethridge L E, Mosconi M W, Takarae Y, Sweeney J A. Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2013, 5:Article No.24 doi: 10.1186/1866-1955-5-24 [16] Jones T B, Bandettini P A, Kenworthy L, Case L K, Milleville S C, Martin A, Birn R M. Sources of group differences in functional connectivity:an investigation applied to autism spectrum disorder. NeuroImage, 2010, 49 (1):401-414 doi: 10.1016/j.neuroimage.2009.07.051 [17] Chen W T, Wang Z Z, Xie H B, Yu W X. Characterization of surface EMG signal based on fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15 (2):266-272 doi: 10.1109/TNSRE.2007.897025 [18] Kitzbichler M G, Khan S, Ganesan S, Vangel M G, Herbert M R, Hämäläinen M S, Kenet T. Altered development and multifaceted band-specific abnormalities of resting state networks in autism. Biological Psychiatry, 2015, 77 (9):794-804 doi: 10.1016/j.biopsych.2014.05.012 [19] 孟明, 朱俊青, 佘青山, 马玉良, 罗志增.多类运动想象脑电信号的两级特征提取方法.自动化学报, 2016, 42(12):1915-1922 http://www.aas.net.cn/CN/abstract/abstract18978.shtmlMeng Ming, Zhu Jun-Qing, She Qing-Shan, Ma Yu-Liang, Luo Zhi-Zeng. Two-level feature extraction method for multi-class motor imagery EEG. Acta Automatica Sinica, 2016, 42 (12):1915-1922 http://www.aas.net.cn/CN/abstract/abstract18978.shtml [20] 杨默涵, 陈万忠, 李明阳.基于总体经验模态分解的多类特征的运动想象脑电识别方法研究.自动化学报, 2017, 43 (5):743-752 http://www.aas.net.cn/CN/abstract/abstract19052.shtmlYang Mo-Han, Chen Wan-Zhong, Li Ming-Yang. Multiple feature extraction based on ensemble empirical mode decomposition for motor imagery EEG recognition tasks. Acta Automatica Sinica, 2017, 43 (5):743-752 http://www.aas.net.cn/CN/abstract/abstract19052.shtml [21] Tipping M E. Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research, 2001, 1 (3):211-244 http://d.old.wanfangdata.com.cn/Periodical/dsjs201802008 [22] 王金甲, 陈春.分层向量自回归的多通道脑电信号的特征提取研究.自动化学报, 2016, 42 (8):1215-1226 http://www.aas.net.cn/CN/abstract/abstract18911.shtmlWang Jin-Jia, Chen Chun. Multi-channel EEG feature extraction using hierarchical vector autoregression. Acta Automatica Sinica, 2016, 42 (8):1215-1226 http://www.aas.net.cn/CN/abstract/abstract18911.shtml [23] 邹凌, 严永, 杨彪, 李文杰, 潘昌杰, 周仁来.基于同步EEG-fMRI采集的情绪认知重评数据特征融合分析研究.自动化学报, 2016, 42 (5):771-781 http://www.aas.net.cn/CN/abstract/abstract18866.shtmlZou Ling, Yan Yong, Yang Biao, Li Wen-Jie, Pan Chang-Jie, Zhou Ren-Lai. Feature fusion analysis of simultaneously recorded EEG-fMRI in emotion cognitive reappraisal. Acta Automatica Sinica, 2016, 42 (5):771-781 http://www.aas.net.cn/CN/abstract/abstract18866.shtml [24] Espy K A, Sheffield T D, Wiebe S A, Clark C A C, Moehr M J. Executive control and dimensions of problem behaviors in preschool children. Journal of Child Psychology and Psychiatry, 2011, 52 (1):33-46 doi: 10.1111/j.1469-7610.2010.02265.x [25] Agustín-Pavón C, Braesicke K, Shiba Y, Santangelo A M, Mikheenko Y, Cockroft G, Asma F, Clarke H, Man M S, Roberts A C. Lesions of ventrolateral prefrontal or anterior orbitofrontal cortex in primates heighten negative emotion. Biological Psychiatry, 2012, 72 (4):266-272 doi: 10.1016/j.biopsych.2012.03.007 [26] Duerden E G, Mak-Fan K M, Taylor M J, Roberts S W. Regional differences in grey and white matter in children and adults with autism spectrum disorders:an activation likelihood estimate (ALE) meta-analysis. Autism Research, 2012, 5 (1):49-66 doi: 10.1002/aur.2012.5.issue-1 [27] Sajdel-Sulkowska E M, Xu M, McGinnis W, Koibuchi N. Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). The Cerebellum, 2011, 10 (1):43-48 doi: 10.1007/s12311-010-0223-4 [28] Azmitia E C, Impallomeni A. Dynamic brain changes in autism:review of telencephalic structures. Comprehensive Guide to Autism. New York, NY, USA:Springer, 2014. 695-716 [29] Ecker C, Suckling J, Deoni S C, Lombardo M V, Bullmore E T, Baron-Cohen S, Catani M, Jezzard P, Barnes A, Bailey A J, Williams S C, Murphy D G, MRC AIMS Consortium. Brain anatomy and its relationship to behavior in adults with autism spectrum disorder:a multicenter magnetic resonance imaging study. Archives of General Psychiatry, 2012, 69 (2):195-209 doi: 10.1001/archgenpsychiatry.2011.1251