2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相机与摇摆激光雷达融合的非结构化环境定位

俞毓锋 赵卉菁

俞毓锋, 赵卉菁. 基于相机与摇摆激光雷达融合的非结构化环境定位. 自动化学报, 2019, 45(9): 1791-1798. doi: 10.16383/j.aas.2018.c170281
引用本文: 俞毓锋, 赵卉菁. 基于相机与摇摆激光雷达融合的非结构化环境定位. 自动化学报, 2019, 45(9): 1791-1798. doi: 10.16383/j.aas.2018.c170281
YU Yu-Feng, ZHAO Hui-Jing. Off-road Localization Using Monocular Camera and Nodding LiDAR. ACTA AUTOMATICA SINICA, 2019, 45(9): 1791-1798. doi: 10.16383/j.aas.2018.c170281
Citation: YU Yu-Feng, ZHAO Hui-Jing. Off-road Localization Using Monocular Camera and Nodding LiDAR. ACTA AUTOMATICA SINICA, 2019, 45(9): 1791-1798. doi: 10.16383/j.aas.2018.c170281

基于相机与摇摆激光雷达融合的非结构化环境定位

doi: 10.16383/j.aas.2018.c170281
基金项目: 

国家863课题 2012AA011801

国家自然科学基金 61573027

详细信息
    作者简介:

    俞毓锋  北京大学信息科学技术学院博士研究生.2011年获得北京大学信息科学技术学院学士学位.主要研究方向为智能车与计算机视觉.E-mail:yuyufeng@pku.edu.cn

    通讯作者:

    赵卉菁   北京大学机器感知与智能教育部重点实验室研究员.1999年获得日本东京大学土木工程专业博士学位.主要研究方向为智能车, 机器感知与移动机器人.本文通信作者.E-mail:zhaohj@cis.pku.edu.cn

Off-road Localization Using Monocular Camera and Nodding LiDAR

Funds: 

National High Technology Research and Development Program of China (863 Program) 2012AA011801

National Natural Science Foundation of China 61573027

More Information
    Author Bio:

      Ph. D. candidate at the School of Electronics Engineering and Computer Science, Peking University. He received his bachelor degree from School of Electronics Engineering and Computer Science, Peking University in 2011. His research interest covers intelligent vehicle and computer vision

    Corresponding author: ZHAO Hui-Jing   Professor at the Key Laboratory on Machine Perception (Ministry of Education), Peking University. She received her Ph. D. degree from the University of Tokyo, Japan, in 1999. Her research interest covers intelligent vehicle, machine perception and mobile robot. Corresponding author of this paper
  • 摘要: 定位是机器人导航的关键问题,在缺乏结构信息的室外非结构化环境下,精确的三维定位面临更大挑战.本文提出一种基于相机与摇摆激光雷达融合的定位算法,重点解决在光照,地面起伏等因素影响下的机器人定位问题.本文结合激光雷达的深度信息和图像的颜色纹理信息,构建在时序帧间的特征点匹配关系;引入一种置信度评价方法,结合系统误差、数据关联、物体遮挡、特征跟踪等因素对特征点及其匹配关系进行评估,减少低质量特征的影响;最终将定位问题转化为特征点对的加权重投影误差优化问题予以解决.本文利用小型轮式移动机器人在越野和公园等典型非结构化环境下进行数据采集和实验验证.实验结果表明,与前沿的视觉定位算法相比,本文算法可有效提高在非结构化环境中的定位精度.
  • 图  1  问题定义

    Fig.  1  Problem statement

    图  2  系统流程

    Fig.  2  System overview

    图  3  激光特征点到图像的对应求解

    Fig.  3  LiDAR-to-camera correspondence generation

    图  4  图像特征点到激光的对应求解

    Fig.  4  Camera-to-LiDAR correspondence generation

    图  5  数据融合时, 传感器视点不同造成的物体遮挡示意

    Fig.  5  Example of occlusion in camera-LiDAR fusion caused by different point of view

    图  6  非结构化环境和机器人平台

    Fig.  6  Off-road environments and robot platform

    图  7  激光点投影到视频结果

    Fig.  7  Projection results of LiDAR points

    图  8  特征跟踪与置信度结果

    Fig.  8  Feature tracking and confidence measure results

    图  9  越野环境定位结果

    Fig.  9  Localization results in off-road environment

    图  10  公园环境定位结果

    Fig.  10  Localization results in park area

    表  1  不同定位算法闭合误差(m)

    Table  1  Results of different localization algorithms (m)

    越野环境闭合误差 公园环境闭合误差
    二维 三维 二维 三维
    odom 0.2528 3.9004
    orb-mono 0.9937 0.9937 16.9097 16.9231
    orb-stereo 0.5565 1.1419 3.8488 3.8708
    viso-stereo 0.2501 0.3644 10.1943 13.1358
    our+SOT 0.1031 0.1094 2.3492 2.5889
    下载: 导出CSV

    表  2  重投影误差与定位结果相关性

    Table  2  Correlation of re-projection errors and localization error

    特征点数 投影误差(pixel) 定位误差(m)
    orb-stereo 627.00 6.33 1.1419
    viso-stereo 621.72 7.69 0.3644
    our 612.09 4.32 0.5126
    our + $S$ 568.07 4.23 0.4299
    our + $S$ + $O$ 318.08 3.77 0.3047
    our + $S$ + T 295.92 3.74 0.3100
    our + $S$ + $O$ + $T$ 244.52 3.40 0.1094
    下载: 导出CSV
  • [1] Nistér D, Naroditsky O, Bergen J R. Visual odometry for ground vehicle applications. Journal of Field Robotics, 2006, 23(1):3-20 doi: 10.1002-rob.20103/
    [2] Mur-Artal R, Montiel J M M, Tardós J D. ORB-SLAM:a versatile and accurate monocular slam system. IEEE Transactions on Robotics, 2015, 31(5):1147-1163 doi: 10.1109/TRO.2015.2463671
    [3] Kuramachi R, Ohsato A, Sasaki Y, Mizoguchi H. G-ICP SLAM: an odometry-free 3D mapping system with robust 6dof pose estimation. In: Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). Zhuhai, China: IEEE, 2015. 176-181
    [4] Weingarten J, Siegwart R. EKF-based 3D SLAM for structured environment reconstruction. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Edmonton, AB, Canada: IEEE, 2005. 3834-3839
    [5] Cole D M, Newman P M. Using laser range data for 3D SLAM in outdoor environments. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA). Orlando, FL, United States: IEEE, 2006. 1556-1563
    [6] Zhang J, Kaess M, Singh S. Real-time depth enhanced monocular odometry. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL, United States: IEEE, 2014. 4973-4980
    [7] Zhang J, Singh S. Visual-lidar odometry and mapping: low-drift, robust, and fast. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, United States: IEEE, 2015. 2174-2181
    [8] Grimes M, LeCun Y. Efficient off-road localization using visually corrected odometry. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan: IEEE, 2009. 2649-2654
    [9] Harrison A, Newman P M. High quality 3D laser ranging under general vehicle motion. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA). Pasadena, CA, United States: IEEE, 2008. 7-12
    [10] Zhang J, Singh S. LOAM: lidar odometry and mapping in real-time. In: Proceedings of the 2014 Robotics: Science and Systems Conference. Berkeley, CA, USA, 2014
    [11] González R, Rodríguez F, Guzmán J L. Autonomous Tracked Robots in Planar Off-Road Conditions: Modelling, Localization, and Motion Control. Cham: Springer, 2014.
    [12] Forster C, Carlone L, Dellaert F, Scaramuzza D. On-manifold preintegration for real-time visual——inertial odometry. IEEE Transactions on Robotics, 2017, 33(1):1-21
    [13] Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse. IEEE Robotics and Automation Letters, 2017, 2(2):796-803 doi: 10.1109/LRA.2017.2653359
    [14] Moré J J. The levenberg-marquardt algorithm: implementation and theory. In: Proceedings of the 1978 Biennial Conference Held at Dundee. Berlin, Heidelberg: Springer, 1978. 105-116
    [15] Geiger A, Ziegler J, Stiller C. StereoScan: Dense 3d reconstruction in real-time. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden, Germany: IEEE, 2011. 963-968
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1699
  • HTML全文浏览量:  361
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-22
  • 录用日期:  2018-01-19
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回