[1]
|
Pu H Z, Zhen Z Y, Xia M. Flight control system of unmanned aerial vehicle. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):1-8 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201506024
|
[2]
|
Alkire B, Kallimani J G, Wilson P A, Moore L R. Applications for NAVY Unmanned Aircraft Systems. Technical Report MG-957-NAVY, National Defense Research Institute, USA, 2010.
|
[3]
|
Nader C E. An analysis of manpower requirements for the United States marine corps tiers Ⅱ and Ⅲ unmanned aerial systems family of systems program[Master thesis], Naval Postgraduate School, USA, 2007.
|
[4]
|
Perry J D. Navy unmanned air systems 1915-2011. In: Proceedings of the AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Virginia Beach, VA, USA: AIAA, 2011.
|
[5]
|
Kracinovich S, Engdahl J. Overview of US Navy UAS Programs of Record to TTCP, MAD UAS Meeting, ADA580879, Naval Air Systems Command, USA, 2012.
|
[6]
|
Anon. Jindivik Mk 4A Design Summary. Project Report B4A-C00-051, Aerospace Technologies of Australia, Australia, 1991.
|
[7]
|
Gautrey J E, Cook M V. LPV autopilot design of a Jindivik UAV. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois, USA: AIAA, 2009.
|
[8]
|
Fitzgerald P. Model Flight Control System Design for the Jindivik UAV[Master thesis], Cranfield University, UK, 2000.
|
[9]
|
Zhen Z Y, Zhang Z B, Zhang J H. Guidance and control techniques of carrier based aircraft for automatic carrier landing. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34(6):600-608 http://www.cnki.com.cn/Article/CJFDTotal-NJHY201706002.htm
|
[10]
|
杨一栋, 甄子洋, 邱述斌, 徐佳龙.无人机着舰制导与控制.北京:国防工业出版社, 2013.Yang Yi-Dong, Zhen Zi-Yang, Qiu Shu-Bin, Xu Jia-Long. UAV Carrier Landing Guidance and Control. Beijing:National Defence Industrial Press, 2013.
|
[11]
|
杨一栋, 郑峰婴, 王新华, 史卫民, 徐佳龙.舰载机等效模型及着舰控制规范.北京:国防工业出版社, 2013.Yang Yi-Dong, Zheng Feng-Ying, Wang Xin-Hua, Shi Wei-Min, Xu Jia-Long. Equivalent Models and Landing Control Criterion of Carrier Based Aircraft. Beijing:National Defence Industry Press, 2013.
|
[12]
|
杨一栋.舰载飞机着舰引导与控制.北京:国防工业出版社, 2007.Yang Yi-Dong. Carrier Landing Guidance and Control of Carrier-based Aircraft. Beijing:National Defence Industry Press, 2007.
|
[13]
|
Holmberg J, Leonard J, King D, Cotting M. Flying qualities specifications and design standards for unmanned air vehicles. In: Proceedings of the 2013 AIAA Atmospheric Flight Mechanics Conference and Exhibit. Honolulu, Hawaii, USA: AIAA, 2013.
|
[14]
|
Harbaugh P M. Where stands the LSO. Naval Aviation News, NavWeps, 1962, 00-75R-3:16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/13670069000040020109
|
[15]
|
Fitzgerald P. Flight Control System Design for Autonomous UAV Carrier Landing[Ph. D. dissertation], Cranfield University, UK, 2004.
|
[16]
|
裴锦华.无人机撞网回收的技术发展.南京航空航天大学学报, 2009, 41(S1):6-11 http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2002Pei Jin-Hua. Technology development of UAV net recovery system. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(S1):6-11 http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2002
|
[17]
|
Fahlstrom P G, Gleason T J. Introduction to UAV Systems (4th edition). New York, USA:John Wiley and Sons, 2012.
|
[18]
|
McGillivary P. Design considerations for launch and recovery of autonomous systems from ships, including coast guard icebreakers. In: Proceedings of the 2010 Symposia on Launch and Recovery. Arlington, VA, USA, 2010. 1-22
|
[19]
|
Skulstad R, Syversen C L, Merz M, Sokolova N, Fossen T I, Johansen T A. Net recovery of UAV with single-frequency RTK GPS. In: Proceedings of the 2015 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2015. 1-10
|
[20]
|
Syversen C L, Skulstad R. Low-Cost Instrumentation System for Recovery of Fixed-Wing UAV in a Net[Master thesis], Norwegian University of Science and Technology, Trondheim, Norway, 2014.
|
[21]
|
Yoon S, Kim Y, Kim S. Pursuit guidance law and adaptive backstepping controller design for vision-based net-recovery UAV. In: Proceedings of the 2008 AIAA Guidance, Navigation, and Control Conference and Exhibit. Honolulu, Hawaii, USA: AIAA, 2008.
|
[22]
|
Yoon S, Kim H J, Kim Y. Spiral landing trajectory and pursuit guidance law design for vision-based net-recovery UAV. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois, USA: AIAA, 2009.
|
[23]
|
Bradley C, Daniel J, Hanks D, Mckelvey J, Raanan J. UAV Mothership, ADA518429, Naval Surface Warfare Center Carderock Division, USA, 2009.
|
[24]
|
郭亮, 张红英, 童明波.无人机伞回收动力学分析.南京航空航天大学学报, 2012, 44(1):14-19 doi: 10.3969/j.issn.1005-2615.2012.01.003Guo Liang, Zhang Hong-Ying, Tong Ming-Bo. Dynamics analysis on parachute recovery of unmanned aerial vehicle. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 44(1):14-19 doi: 10.3969/j.issn.1005-2615.2012.01.003
|
[25]
|
Wyllie T. Parachute recovery for UAV systems. Aircraft Engineering and Aerospace Technology, 2001, 73(6):542-551 doi: 10.1108/00022660110696696
|
[26]
|
Brown G, Haggard R, Fogleman J. Parafoils for shipboard recovery of UAVs. In: Proceedings of the 11th Aerodynamic Decelerator Systems Technology Conference. San Diego, CA, USA: AIAA, 1991. 48-53
|
[27]
|
Crowther W J, Prassas K. Post stall landing for field retrieval of UAVs. In: Proceedings of the 14th Bristol International Unmanned Air Vehicle Systems Conference. Bristol, UK, 1999.
|
[28]
|
Walz M. Parasail launch and recovery of fixed wing UAVs. Unmanned Systems, 2002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027928547
|
[29]
|
Dennis B D. Methods and Apparatuses for Capturing and Recovering Unmanned Aircraft, Including a Cleat for Capturing Aircraft on a Line, U.S. Patent 7059564, June 2006.
|
[30]
|
Gajjar B I, Zalewski J. A07:On-ship landing and takeoff of unmanned aerial vehicles (UAV's). IFAC Proceedings Volumes, 2004, 37(20):42-46 doi: 10.1016/S1474-6670(17)30568-2
|
[31]
|
Khantsis S. Control System Design Using Evolutionary Algorithms for Autonomous Shipboard Recovery of Unmanned Aerial Vehicles[Ph. D. dissertation], Royal Melbourne Institute of Technology, Australia, 2006.
|
[32]
|
Khantsis S, Bourmistrova A. UAV controller design using evolutionary algorithms. In: Proceedings of the 18th Australian Joint Conference on Advances in Artificial Intelligence. Berlin, Germany: Springer, 2005. 1025-1030
|
[33]
|
卢伟, 马晓平, 周明, 孙林峰.无人机绳钩回收系统的动力学特性仿真分析.航空学报, 2015, 36(10):3295-3304 http://d.old.wanfangdata.com.cn/Periodical/hkxb201510010Lu Wei, Ma Xiao-Ping, Zhou Ming, Sun Lin-Feng. Simulation analysis of dynamic characteristic of UAV rope-hook recovery system. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3295-3304 http://d.old.wanfangdata.com.cn/Periodical/hkxb201510010
|
[34]
|
Eriksson M, Ringman P. Launch and Recovery Systems for Unmanned Vehicles Onboard Ships. A Study and Initial Concepts[Master thesis], KTH Royal Institute of Technology, Sweden, 2015.
|
[35]
|
Mathisen S H, Gryte K, Johansen T, Fossen T I. Non-linear model predictive control for longitudinal and lateral guidance of a small fixed-wing UAV in precision deep stall landing. In: Proceedings of the 2016 AIAA Guidance, Navigation, and Control Conference. San Diego, USA: AIAA, 2016. 1-16
|
[36]
|
Crowther W J. Perched landing and takeoff for fixed wing UAVs. In: Proceedings of the 2000 Applied Vehicle Technology Symposium on Unmanned Vehicles for Aerial, Ground and Naval Military Operations. Ankara, Turkey, 2000.
|
[37]
|
Nagendran A, Crowther W, Richardson R. Biologically inspired legs for UAV perched landing. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(2):4-13 doi: 10.1109/MAES.2012.6163608
|
[38]
|
Xie P, Ma O, Zhang L, Zhao Z. A bio-inspired UAV leg-foot mechanism for landing, grasping and perching tasks. In: Proceedings of the 2015 AIAA Atmospheric Flight Mechanics Conference. Kissimmee, Florida, USA: AIAA, 2015. 1-15
|
[39]
|
Nagendran A, Richardson R C, Crowther W J. Bell shaped impedance control to minimize jerk while capturing delicate moving objects. In: Proceedings of the 4th International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation. Angers, France, 2007. 504-511
|
[40]
|
Frick H E. Retrieving and/or Launching System, U.S. Patent 4523729, February 1982.
|
[41]
|
Sarigul-Klijn N, Sarigulklijn M. A novel sea launch and recovery concept for fixed wing UAVs. In: Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016. 1-11
|
[42]
|
Joseph M, Sweger F. Design Specifications Development for Unmanned Aircraft Carrier Landings: A Simulation Approach. U.S.N.A. Trident Scholar Project Report No. 316, United States Naval Academy Annapolis, Maryland, USA, 2003.
|
[43]
|
Perh D. A Study into Advanced Guidance Laws Using Computational Methods[Master thesis], Naval Postgraduate School, USA, 2011.
|
[44]
|
甄子洋, 杨一栋, 王新华, 江驹.一种雷达引导无人机自动着舰制导与控制系统及其控制方法, 中国. ZL201510747257.8, 2018.Zhen Zi-Yang, Yang Yi-Dong, Wang Xin-Hua, Jiang Ju. Radar Guided Uav Automatic Landing Guidance and Control System and Control Method, China. Patent ZL201510747257.8, 2018.
|
[45]
|
甄子洋, 王新华, 江驹, 杨一栋.一种GPS引导的无人机自动着舰自适应控制系统及方法, 中国. CN201510572353.3, 2015.Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Yang Yi-Dong. GPS guided UAV automatic landing adaptive control system and method, China. Patent CN201510572353.3, 2015.
|
[46]
|
Skulstad R, Syversen C, Merz M, Sokolova N, Fossen T, Robert J T. Autonomous net recovery of fixed-wing UAV with single-frequency carrier-phase differential GNSS. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(5):18-27 doi: 10.1109/MAES.2015.7119821
|
[47]
|
Kim H J, Kim M, Lim H, Park C, Yoon S, Lee D, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1320-1333 doi: 10.1109/TMECH.2013.2247411
|
[48]
|
You D I, Jung Y D, Cho S W, Shin H M, Lee S H, Shim D H. A guidance and control law design for precision automatic take-off and landing of fixed-wing UAVs. In: Proceedings of the 2012 AIAA Guidance, Navigation, and Control Conference. Minneapolis, Minnesota, USA: AIAA, 2012. 1-19
|
[49]
|
郑峰婴, 龚华军, 甄子洋.基于坐标系动态变化的无人机着舰引导算法.中南大学学报(自然科学版), 2016, 47(8):2685-2693 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201608020Zheng Feng-Ying, Gong Hua-Jun, Zhen Zi-Yang. Carrier UAV autonomous landing algorithm based on dynamic change of coordinate system. Journal of Central South University (Science and Technology), 2016, 47(8):2685-2693 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201608020
|
[50]
|
Storvik M. Guidance System for Automatic Approach to a Ship[Master thesis], Norwegian University of Science and Technology, Norwegian, 2003.
|
[51]
|
Chwa D, Choi J Y, Anavatti S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics. IEEE Transactions on Control Systems Technology, 2006, 14(1):112-123 doi: 10.1109/TCST.2005.860529
|
[52]
|
Kim B S, Calise A J, Sattigeri R. Adaptive, integrated guidance and control design for line-of-sight-based formation flight. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1386-1399 doi: 10.2514/1.27758
|
[53]
|
Oshman Y, Rad D A. Differential-game-based guidance law using target orientation observations. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1):316-326 doi: 10.1109/TAES.2006.1603425
|
[54]
|
Shinar J, Shima T, Weiss H. New interceptor guidance law integrating time varying and estimation-delay models. Journal of Guidance, Control, and Dynamics, 2003, 26(2):295-303 doi: 10.2514/2.5046
|
[55]
|
蒋毅, 孙春贞, 王凯.舰载无人机撞网回收自适应制导技术.飞行力学, 2015, 33(1):43-47 http://d.old.wanfangdata.com.cn/Periodical/fxlx201501011Jiang Yi, Sun Chun-Zhen, Wang Kai. Ship-board UAV net recovery adaptive guidance technology. Flight Dynamics, 2015, 33(1):43-47 http://d.old.wanfangdata.com.cn/Periodical/fxlx201501011
|
[56]
|
De Lellis E, Di Vito V, Ruby M, Salbego N. Adaptive algorithm for fixed wing UAV autolanding on aircraft carrier. In: Proceedings of the 2013 AIAA Guidance, Navigation, and Control and Co-located Conferences. Boston, MA, USA: AIAA, 2013.
|
[57]
|
郭庆, 张炜, 张怡哲, 宋笔锋.舰载无人机精确着舰轨迹控制及飞行验证.飞行力学, 2012, 30(5):448-453 http://d.old.wanfangdata.com.cn/Periodical/fxlx201205016Guo Qing, Zhang Wei, Zhang Yi-Zhe, Song Bi-Feng. Accurate landing glide path control system of carrier-based UAV and its flight test. Flight Dynamics, 2012, 30(5):448-453 http://d.old.wanfangdata.com.cn/Periodical/fxlx201205016
|
[58]
|
Kahn A, Edwards D. Navigation, guidance and control for the CICADA expendable micro air vehicle. In: Proceedings of the 2012 AIAA Guidance, Navigation and Control Conference. Minneapolis, Minnesota, USA: AIAA, 2012.
|
[59]
|
Wang S, Zhen Z Y, Jiang J, Wang X H. Flight tests of autopilot integrated with fault-tolerant control of a small fixed-wing UAV. Mathematical Problems in Engineering, 2016, 2016: Article ID 2141482
|
[60]
|
Wang S, Zhen Z Y, Zheng F Y, Wang X H. Design of autonomous flight control system for small-scale UAV. In: Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference. Yantai, China: IEEE, 2014. 1885-1888
|
[61]
|
Zhen Z Y, Jiang J, Wang X H, Wang D B. Information fusion-based optimal attitude control for an alterable thrust direction unmanned aerial vehicle. International Journal of Advanced Robotic System, 2013, 10(1):43 doi: 10.5772/54886
|
[62]
|
甄子洋.预见控制理论及应用研究进展.自动化学报, 2016, 42(2):172-188 http://www.aas.net.cn/CN/abstract/abstract18808.shtmlZhen Zi-Yang. Research development in preview control theory and applications. Acta Automatica Sinica, 2016, 42(2):172-188 http://www.aas.net.cn/CN/abstract/abstract18808.shtml
|
[63]
|
甄子洋, 王志胜, 王道波.基于信息融合估计的离散线性系统预见控制.自动化学报, 2010, 36(2):347-352 http://www.aas.net.cn/CN/abstract/abstract13523.shtmlZhen Zi-Yang, Wang Zhi-Sheng, Wang Dao-Bo. Information fusion estimation based preview control for discrete linear system. Acta Automatica Sinica, 2010, 36(2):347-352 http://www.aas.net.cn/CN/abstract/abstract13523.shtml
|
[64]
|
Zhen Z Y, Ma K, Kumar B A. Automatic carrier landing control for unmanned aerial vehicles based on preview control. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34(4):413-419 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkhtdxxb-e201704011
|
[65]
|
甄子洋, 邵敏敏, 龚华军, 江驹.一种基于鲁棒预见控制的舰载机自动着舰控制方法, 中国. ZL201510158509.3, 2017.Zhen Zi-Yang, Shao Min-Min, Gong Hua-Jun, Jiang Ju. Robust preview control based automatic carrier landing control for carrier-based aircraft, China. ZL201510158509.3, 2017.
|
[66]
|
Zhen Z Y, Jiang S Y, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2662-2674 doi: 10.1109/TAES.2018.2826398
|
[67]
|
Zhen Z Y, Jiang S Y, Ma K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering. Aerospace Science and Technology, 2018, 81:99-107 doi: 10.1016/j.ast.2018.07.039
|
[68]
|
王硕, 甄子洋, 王新华, 江驹, 孙一力.一种舰载无人机自主着舰的飞行控制系统及方法, 中国. CN201410726947.0, 2015.Wang Shuo, Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Sun Yi-Li. Flight control system and method for carrier-based UAV autonomous landing, China. Patent CN201410726947. 0, 2015.
|
[69]
|
Denison N A. Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion, Air Force Institute of Technology, USA, 2007.
|
[70]
|
Boskovic J D, Redding J. An autonomous carrier landing system for Unmannned Aerial Vehicles. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference and Exhibit. Chicago, Illinois, USA: AIAA, 2009. 1-17
|
[71]
|
李若兰, 甄子洋, 龚华军.基于趋近律滑模最优控制的无人机撞网回收轨迹控制.电光与控制, 2014, 21(9):58-60, 84 doi: 10.3969/j.issn.1671-637X.2014.09.013Li Ruo-Lan, Zhen Zi-Yang, Gong Hua-Jun. Trajectory control of a UAV during net recovery based on sliding mode control and optimal control. Electronics Optics and Control, 2014, 21(9):58-60, 84 doi: 10.3969/j.issn.1671-637X.2014.09.013
|
[72]
|
郑峰婴, 龚华军, 甄子洋.基于积分滑模控制的无人机自动着舰系统.系统工程与电子技术, 2015, 37(7):1621-1628 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201507023Zheng Feng-Ying, Gong Hua-Jun, Zhen Zi-Yang. Carrier UAV autonomous landing system based on integral sliding mode control. Systems Engineering and Electronics, 2015, 37(7):1621-1628 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201507023
|
[73]
|
Zheng F Y, Gong H J, Zhen Z Y. Tradeoff analysis of factors affecting longitudinal carrier landing performance for small UAV based on backstepping controller. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):97-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkhtdxxb-e201501013
|
[74]
|
Goodwin G C, Graebe S F, Salgado M E. Control System Design. New Jersey:Prentice-Hall, 2001.
|
[75]
|
甄子洋, 陶钢, 江驹, 王新华.无人机自动撞网着舰轨迹自适应跟踪控制.哈尔滨工程大学学报, 2017, 38(12):1922-1927 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201712015Zhen Zi-Yang, Tao Gang, Jiang Ju, Wang Xin-Hua. Adaptive tracking control of automatic net landing trajectory for carrier-based unmanned aerial vehicle. Journal of Harbin Engineering University, 2017, 38(12):1922-1927 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201712015
|
[76]
|
甄子洋, 王新华, 杨一栋.基于模型参考自适应控制的舰载无人机自动着舰控制装置, 中国. ZL201610917907.3, 2018.Zhen Zi-Yang, Wang Xin-Hua, Yang Yi-Dong. Carrier-based UAV automatic landing control device based on model reference adaptive control, China. Patent ZL201610917907.3, 2018.
|
[77]
|
Zheng F Y, Gong H J, Zhen Z Y. Adaptive constraint backstepping fault-tolerant control for small carrier-based unmanned aerial vehicle with uncertain parameters. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(3):407-425 doi: 10.1177/0954410015592169
|
[78]
|
Zheng F Y, Zhen Z Y, Gong H J. Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults. Journal of Systems Engineering and Electronics, 2017, 28(2):322-337 doi: 10.21629/JSEE.2017.02.14
|
[79]
|
Wadley J, Tallant G, Ruszkowski R. Adaptive flight control of a carrier based unmanned air vehicle. In: Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, USA: AIAA, 2003. 1-9
|
[80]
|
Bourmistrova A, Khantsis S. Control system design optimisation via genetic programming. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore, Singapore: IEEE, 2007. 1993-2000
|
[81]
|
Kahn A. Adaptive control for small fixed-wing unmanned air vehicles. In: Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada: AIAA, 2010. 1-17
|
[82]
|
甄子洋, 王新华, 江驹, 杨一栋.舰载机自动着舰引导与控制研究进展.航空学报, 2017, 38(2):1-22 http://d.old.wanfangdata.com.cn/Periodical/hkxb201702012Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Yang Yi-Dong. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):1-22 http://d.old.wanfangdata.com.cn/Periodical/hkxb201702012
|
[83]
|
Lin S G, Garratt M, Lambert A, Li P. 6DoF motion estimation for UAV landing on a moving shipdeck using real-time on-board vision. In: Proceedings of the 2015 Australasian Conference on Robotics and Automation. Canberra, ACT, Australia, 2015. 1-10
|
[84]
|
Khan A A, Marion K E, Bil C, Simic M. Motion prediction for ship-based autonomous air vehicle operations. In: Proceedings of the 2016 Intelligent Interactive Multimedia Systems and Services. Cham: Springer, 2016. 323-333
|
[85]
|
Moriarty P, Sheehy R, Doody P. Neural networks to aid the autonomous landing of a UAV on a ship. In: Proceedings of the 28th Irish Signals and Systems Conference. Killarney, Ireland: IEEE, 2017. 1-4
|
[86]
|
Koo S, Kim S, Suk J. Model predictive control for UAV automatic landing on moving carrier deck with heave motion. IFAC-Papers OnLine, 2015, 48(5):59-64 doi: 10.1016/j.ifacol.2015.06.464
|
[87]
|
甄子洋, 邵敏敏, 龚华军, 王新华, 江驹.一种含舰尾气流补偿的舰载机自动着舰复合控制方法, 中国. ZL201510243842.4, 2017.Zhen Zi-Yang, Shao Min-Min, Gong Hua-Jun, Wang Xin-Hua, Jiang Ju. Airwake compen-sation based automatic carrier landing composite control for carrier-based aircraft: China. ZL201510243842.4. 2017.
|
[88]
|
江驹, 甄子洋, 王新华, 杨一栋, 袁锁中, 焦鑫.抑制舰尾气流扰动的舰载机着舰引导与控制系统及方法, 中国. ZL201110287699.0, 2014.Jiang Ju, Zhen Zi-Yang, Wang Xin-Hua, Yang Yi-Dong, Yuan Suo-Zhong, Jiao Xin. Airwake disturbance rejection based carrier landing guidance and control system of carrier-based aircraft. ZL201110287699.0. 2014.
|
[89]
|
Ye L Q, Zong Q, Crassidis J L, Tian B L. Output-redefinition-based dynamic inversion control for a nonminimum phase hypersonic vehicle. IEEE Transactions on Industrial Electronics, 2018, 65(4):3447-3457 doi: 10.1109/TIE.2017.2760246
|
[90]
|
Apaza-Perez W A, Moreno J A, Fridman L M. Dissipative approach to sliding mode observers design for uncertain mechanical systems. Automatica, 2018, 87:330-336 doi: 10.1016/j.automatica.2017.10.016
|
[91]
|
Wang D D, Zong Q, Tian B L, Shao S K, Zhang X Y, Zhao X Y. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Transactions, 2018, 73:208-226 doi: 10.1016/j.isatra.2017.12.011
|
[92]
|
Wang H Q, Shi P, Li H Y, Zhou Q. Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Transactions on Cybernetics, 2017, 47(10):3075-3087 doi: 10.1109/TCYB.2016.2607166
|
[93]
|
甄子洋, 孙一力, 浦黄忠, 王道波.一种基于大脑情感学习的无人机推力变向智能控制方法, 中国. ZL201510264667.7, 2017.Zhen Zi-Yang, Sun Yi-Li, Pu Huang-Zhong, Wang Dao-Bo. UAV thrust vectoring intelligent control method based on brain emotion learning, China. Patent ZL201510264667.7, 2017.
|
[94]
|
Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Transactions on Industrial Electronics, 2018, 65(5):4135-4144 doi: 10.1109/TIE.2017.2772192
|
[95]
|
Klausen K, Moe J B, Van Den Hoorn J C, Gomola A, Fossen T I, Johansen T A. Coordinated control concept for recovery of a fixed-wing UAV on a ship using a net carried by multirotor UAVs. In: Proceedings of the 2016 International Conference on Unmanned Aircraft Systems. Arlington, VA, USA: IEEE, 2016. 964-973
|
[96]
|
Ryan J C. Investigating possible effects of UAVs on aircraft carrier deck operations. Humans and Automation Laboratory, Cambridge, MA, USA, 2011.
|