2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰载无人机自主着舰回收制导与控制研究进展

甄子洋

甄子洋. 舰载无人机自主着舰回收制导与控制研究进展. 自动化学报, 2019, 45(4): 669-681. doi: 10.16383/j.aas.2018.c170261
引用本文: 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展. 自动化学报, 2019, 45(4): 669-681. doi: 10.16383/j.aas.2018.c170261
ZHEN Zi-Yang. Research Development in Autonomous Carrier-Landing/Ship-Recovery Guidance and Control of Unmanned Aerial Vehicles. ACTA AUTOMATICA SINICA, 2019, 45(4): 669-681. doi: 10.16383/j.aas.2018.c170261
Citation: ZHEN Zi-Yang. Research Development in Autonomous Carrier-Landing/Ship-Recovery Guidance and Control of Unmanned Aerial Vehicles. ACTA AUTOMATICA SINICA, 2019, 45(4): 669-681. doi: 10.16383/j.aas.2018.c170261

舰载无人机自主着舰回收制导与控制研究进展

doi: 10.16383/j.aas.2018.c170261
基金项目: 

国家自然科学基金 61741313

国家自然科学基金 61673209

航空科学基金 2016ZA52009

江苏省六大人才高峰高层次人才项目 KTHY-027

国家自然科学基金 61533008

中央高校基本科研业务费专项资金 NS2017015

详细信息
    作者简介:

    甄子洋  博士, 南京航空航天大学自动化学院教授.主要研究方向为预见控制, 智能与自适应控制, 无人机/舰载机/高超声速飞行器飞行控制, 多无人机集群协同控制与决策研究.E-mail:zhenziyang@nuaa.edu.cn

Research Development in Autonomous Carrier-Landing/Ship-Recovery Guidance and Control of Unmanned Aerial Vehicles

Funds: 

National Natural Science Foundation of China 61741313

National Natural Science Foundation of China 61673209

Aeronautical Science Foundation 2016ZA52009

Jiangsu Six Peak of Talents Program KTHY-027

National Natural Science Foundation of China 61533008

Fundamental Research Funds for the Central Universities NS2017015

More Information
    Author Bio:

     Ph. D., professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers preview control, intelligent and adaptive control, UAV/carrier-based aircraft/hypersonic aircraft flight control, and multi-UAV swarm cooperative control and decision

  • 摘要: 舰载无人机正成为未来海战的重要组成部分,制导与控制是舰载无人机自主着舰/回收的关键技术.本文综述了舰载无人机自主着舰/回收制导与控制技术.概述了舰载无人机的发展历史,简单描述了舰载无人机跑道拦阻着舰、撞网回收、伞降回收、绳钩回收、天钩回收、过失速着舰、智能飞落着舰、风向筒回收、秋千式吊架回收等典型着舰回收方式.在深入分析无人机自主着舰/回收制导与控制关键问题的基础上,重点概述了无人机着舰/回收经典制导与现代制导技术,以及着舰/回收经典控制、现代控制、非线性与自适应控制、智能控制等飞行控制技术的研究现状.最后,对无人机自主着舰/回收制导与控制技术的发展状况进行总结,并对未来研究重点进行展望.
    1)  本文责任编委 朱纪洪
  • 图  1  无人机自动着舰/回收制导与控制系统原理框图

    Fig.  1  Guidance and control system diagram for automatic carrier-landing/ship-recovery of UAV

    图  2  翔飞无人机纵向控制系统结构

    Fig.  2  Xiangfei UAV longitudinal control system structure

    图  3  基于自适应控制的无人机着舰控制系统

    Fig.  3  Adaptive control based UAV carrier-landing control system

  • [1] Pu H Z, Zhen Z Y, Xia M. Flight control system of unmanned aerial vehicle. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):1-8 http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201506024
    [2] Alkire B, Kallimani J G, Wilson P A, Moore L R. Applications for NAVY Unmanned Aircraft Systems. Technical Report MG-957-NAVY, National Defense Research Institute, USA, 2010.
    [3] Nader C E. An analysis of manpower requirements for the United States marine corps tiers Ⅱ and Ⅲ unmanned aerial systems family of systems program[Master thesis], Naval Postgraduate School, USA, 2007.
    [4] Perry J D. Navy unmanned air systems 1915-2011. In: Proceedings of the AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Virginia Beach, VA, USA: AIAA, 2011.
    [5] Kracinovich S, Engdahl J. Overview of US Navy UAS Programs of Record to TTCP, MAD UAS Meeting, ADA580879, Naval Air Systems Command, USA, 2012.
    [6] Anon. Jindivik Mk 4A Design Summary. Project Report B4A-C00-051, Aerospace Technologies of Australia, Australia, 1991.
    [7] Gautrey J E, Cook M V. LPV autopilot design of a Jindivik UAV. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois, USA: AIAA, 2009.
    [8] Fitzgerald P. Model Flight Control System Design for the Jindivik UAV[Master thesis], Cranfield University, UK, 2000.
    [9] Zhen Z Y, Zhang Z B, Zhang J H. Guidance and control techniques of carrier based aircraft for automatic carrier landing. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34(6):600-608 http://www.cnki.com.cn/Article/CJFDTotal-NJHY201706002.htm
    [10] 杨一栋, 甄子洋, 邱述斌, 徐佳龙.无人机着舰制导与控制.北京:国防工业出版社, 2013.

    Yang Yi-Dong, Zhen Zi-Yang, Qiu Shu-Bin, Xu Jia-Long. UAV Carrier Landing Guidance and Control. Beijing:National Defence Industrial Press, 2013.
    [11] 杨一栋, 郑峰婴, 王新华, 史卫民, 徐佳龙.舰载机等效模型及着舰控制规范.北京:国防工业出版社, 2013.

    Yang Yi-Dong, Zheng Feng-Ying, Wang Xin-Hua, Shi Wei-Min, Xu Jia-Long. Equivalent Models and Landing Control Criterion of Carrier Based Aircraft. Beijing:National Defence Industry Press, 2013.
    [12] 杨一栋.舰载飞机着舰引导与控制.北京:国防工业出版社, 2007.

    Yang Yi-Dong. Carrier Landing Guidance and Control of Carrier-based Aircraft. Beijing:National Defence Industry Press, 2007.
    [13] Holmberg J, Leonard J, King D, Cotting M. Flying qualities specifications and design standards for unmanned air vehicles. In: Proceedings of the 2013 AIAA Atmospheric Flight Mechanics Conference and Exhibit. Honolulu, Hawaii, USA: AIAA, 2013.
    [14] Harbaugh P M. Where stands the LSO. Naval Aviation News, NavWeps, 1962, 00-75R-3:16 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/13670069000040020109
    [15] Fitzgerald P. Flight Control System Design for Autonomous UAV Carrier Landing[Ph. D. dissertation], Cranfield University, UK, 2004.
    [16] 裴锦华.无人机撞网回收的技术发展.南京航空航天大学学报, 2009, 41(S1):6-11 http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2002

    Pei Jin-Hua. Technology development of UAV net recovery system. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(S1):6-11 http://d.old.wanfangdata.com.cn/Periodical/njhkht2009z2002
    [17] Fahlstrom P G, Gleason T J. Introduction to UAV Systems (4th edition). New York, USA:John Wiley and Sons, 2012.
    [18] McGillivary P. Design considerations for launch and recovery of autonomous systems from ships, including coast guard icebreakers. In: Proceedings of the 2010 Symposia on Launch and Recovery. Arlington, VA, USA, 2010. 1-22
    [19] Skulstad R, Syversen C L, Merz M, Sokolova N, Fossen T I, Johansen T A. Net recovery of UAV with single-frequency RTK GPS. In: Proceedings of the 2015 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2015. 1-10
    [20] Syversen C L, Skulstad R. Low-Cost Instrumentation System for Recovery of Fixed-Wing UAV in a Net[Master thesis], Norwegian University of Science and Technology, Trondheim, Norway, 2014.
    [21] Yoon S, Kim Y, Kim S. Pursuit guidance law and adaptive backstepping controller design for vision-based net-recovery UAV. In: Proceedings of the 2008 AIAA Guidance, Navigation, and Control Conference and Exhibit. Honolulu, Hawaii, USA: AIAA, 2008.
    [22] Yoon S, Kim H J, Kim Y. Spiral landing trajectory and pursuit guidance law design for vision-based net-recovery UAV. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois, USA: AIAA, 2009.
    [23] Bradley C, Daniel J, Hanks D, Mckelvey J, Raanan J. UAV Mothership, ADA518429, Naval Surface Warfare Center Carderock Division, USA, 2009.
    [24] 郭亮, 张红英, 童明波.无人机伞回收动力学分析.南京航空航天大学学报, 2012, 44(1):14-19 doi: 10.3969/j.issn.1005-2615.2012.01.003

    Guo Liang, Zhang Hong-Ying, Tong Ming-Bo. Dynamics analysis on parachute recovery of unmanned aerial vehicle. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 44(1):14-19 doi: 10.3969/j.issn.1005-2615.2012.01.003
    [25] Wyllie T. Parachute recovery for UAV systems. Aircraft Engineering and Aerospace Technology, 2001, 73(6):542-551 doi: 10.1108/00022660110696696
    [26] Brown G, Haggard R, Fogleman J. Parafoils for shipboard recovery of UAVs. In: Proceedings of the 11th Aerodynamic Decelerator Systems Technology Conference. San Diego, CA, USA: AIAA, 1991. 48-53
    [27] Crowther W J, Prassas K. Post stall landing for field retrieval of UAVs. In: Proceedings of the 14th Bristol International Unmanned Air Vehicle Systems Conference. Bristol, UK, 1999.
    [28] Walz M. Parasail launch and recovery of fixed wing UAVs. Unmanned Systems, 2002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027928547
    [29] Dennis B D. Methods and Apparatuses for Capturing and Recovering Unmanned Aircraft, Including a Cleat for Capturing Aircraft on a Line, U.S. Patent 7059564, June 2006.
    [30] Gajjar B I, Zalewski J. A07:On-ship landing and takeoff of unmanned aerial vehicles (UAV's). IFAC Proceedings Volumes, 2004, 37(20):42-46 doi: 10.1016/S1474-6670(17)30568-2
    [31] Khantsis S. Control System Design Using Evolutionary Algorithms for Autonomous Shipboard Recovery of Unmanned Aerial Vehicles[Ph. D. dissertation], Royal Melbourne Institute of Technology, Australia, 2006.
    [32] Khantsis S, Bourmistrova A. UAV controller design using evolutionary algorithms. In: Proceedings of the 18th Australian Joint Conference on Advances in Artificial Intelligence. Berlin, Germany: Springer, 2005. 1025-1030
    [33] 卢伟, 马晓平, 周明, 孙林峰.无人机绳钩回收系统的动力学特性仿真分析.航空学报, 2015, 36(10):3295-3304 http://d.old.wanfangdata.com.cn/Periodical/hkxb201510010

    Lu Wei, Ma Xiao-Ping, Zhou Ming, Sun Lin-Feng. Simulation analysis of dynamic characteristic of UAV rope-hook recovery system. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3295-3304 http://d.old.wanfangdata.com.cn/Periodical/hkxb201510010
    [34] Eriksson M, Ringman P. Launch and Recovery Systems for Unmanned Vehicles Onboard Ships. A Study and Initial Concepts[Master thesis], KTH Royal Institute of Technology, Sweden, 2015.
    [35] Mathisen S H, Gryte K, Johansen T, Fossen T I. Non-linear model predictive control for longitudinal and lateral guidance of a small fixed-wing UAV in precision deep stall landing. In: Proceedings of the 2016 AIAA Guidance, Navigation, and Control Conference. San Diego, USA: AIAA, 2016. 1-16
    [36] Crowther W J. Perched landing and takeoff for fixed wing UAVs. In: Proceedings of the 2000 Applied Vehicle Technology Symposium on Unmanned Vehicles for Aerial, Ground and Naval Military Operations. Ankara, Turkey, 2000.
    [37] Nagendran A, Crowther W, Richardson R. Biologically inspired legs for UAV perched landing. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(2):4-13 doi: 10.1109/MAES.2012.6163608
    [38] Xie P, Ma O, Zhang L, Zhao Z. A bio-inspired UAV leg-foot mechanism for landing, grasping and perching tasks. In: Proceedings of the 2015 AIAA Atmospheric Flight Mechanics Conference. Kissimmee, Florida, USA: AIAA, 2015. 1-15
    [39] Nagendran A, Richardson R C, Crowther W J. Bell shaped impedance control to minimize jerk while capturing delicate moving objects. In: Proceedings of the 4th International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation. Angers, France, 2007. 504-511
    [40] Frick H E. Retrieving and/or Launching System, U.S. Patent 4523729, February 1982.
    [41] Sarigul-Klijn N, Sarigulklijn M. A novel sea launch and recovery concept for fixed wing UAVs. In: Proceedings of the 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016. 1-11
    [42] Joseph M, Sweger F. Design Specifications Development for Unmanned Aircraft Carrier Landings: A Simulation Approach. U.S.N.A. Trident Scholar Project Report No. 316, United States Naval Academy Annapolis, Maryland, USA, 2003.
    [43] Perh D. A Study into Advanced Guidance Laws Using Computational Methods[Master thesis], Naval Postgraduate School, USA, 2011.
    [44] 甄子洋, 杨一栋, 王新华, 江驹.一种雷达引导无人机自动着舰制导与控制系统及其控制方法, 中国. ZL201510747257.8, 2018.

    Zhen Zi-Yang, Yang Yi-Dong, Wang Xin-Hua, Jiang Ju. Radar Guided Uav Automatic Landing Guidance and Control System and Control Method, China. Patent ZL201510747257.8, 2018.
    [45] 甄子洋, 王新华, 江驹, 杨一栋.一种GPS引导的无人机自动着舰自适应控制系统及方法, 中国. CN201510572353.3, 2015.

    Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Yang Yi-Dong. GPS guided UAV automatic landing adaptive control system and method, China. Patent CN201510572353.3, 2015.
    [46] Skulstad R, Syversen C, Merz M, Sokolova N, Fossen T, Robert J T. Autonomous net recovery of fixed-wing UAV with single-frequency carrier-phase differential GNSS. IEEE Aerospace and Electronic Systems Magazine, 2015, 30(5):18-27 doi: 10.1109/MAES.2015.7119821
    [47] Kim H J, Kim M, Lim H, Park C, Yoon S, Lee D, et al. Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1320-1333 doi: 10.1109/TMECH.2013.2247411
    [48] You D I, Jung Y D, Cho S W, Shin H M, Lee S H, Shim D H. A guidance and control law design for precision automatic take-off and landing of fixed-wing UAVs. In: Proceedings of the 2012 AIAA Guidance, Navigation, and Control Conference. Minneapolis, Minnesota, USA: AIAA, 2012. 1-19
    [49] 郑峰婴, 龚华军, 甄子洋.基于坐标系动态变化的无人机着舰引导算法.中南大学学报(自然科学版), 2016, 47(8):2685-2693 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201608020

    Zheng Feng-Ying, Gong Hua-Jun, Zhen Zi-Yang. Carrier UAV autonomous landing algorithm based on dynamic change of coordinate system. Journal of Central South University (Science and Technology), 2016, 47(8):2685-2693 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201608020
    [50] Storvik M. Guidance System for Automatic Approach to a Ship[Master thesis], Norwegian University of Science and Technology, Norwegian, 2003.
    [51] Chwa D, Choi J Y, Anavatti S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics. IEEE Transactions on Control Systems Technology, 2006, 14(1):112-123 doi: 10.1109/TCST.2005.860529
    [52] Kim B S, Calise A J, Sattigeri R. Adaptive, integrated guidance and control design for line-of-sight-based formation flight. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1386-1399 doi: 10.2514/1.27758
    [53] Oshman Y, Rad D A. Differential-game-based guidance law using target orientation observations. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1):316-326 doi: 10.1109/TAES.2006.1603425
    [54] Shinar J, Shima T, Weiss H. New interceptor guidance law integrating time varying and estimation-delay models. Journal of Guidance, Control, and Dynamics, 2003, 26(2):295-303 doi: 10.2514/2.5046
    [55] 蒋毅, 孙春贞, 王凯.舰载无人机撞网回收自适应制导技术.飞行力学, 2015, 33(1):43-47 http://d.old.wanfangdata.com.cn/Periodical/fxlx201501011

    Jiang Yi, Sun Chun-Zhen, Wang Kai. Ship-board UAV net recovery adaptive guidance technology. Flight Dynamics, 2015, 33(1):43-47 http://d.old.wanfangdata.com.cn/Periodical/fxlx201501011
    [56] De Lellis E, Di Vito V, Ruby M, Salbego N. Adaptive algorithm for fixed wing UAV autolanding on aircraft carrier. In: Proceedings of the 2013 AIAA Guidance, Navigation, and Control and Co-located Conferences. Boston, MA, USA: AIAA, 2013.
    [57] 郭庆, 张炜, 张怡哲, 宋笔锋.舰载无人机精确着舰轨迹控制及飞行验证.飞行力学, 2012, 30(5):448-453 http://d.old.wanfangdata.com.cn/Periodical/fxlx201205016

    Guo Qing, Zhang Wei, Zhang Yi-Zhe, Song Bi-Feng. Accurate landing glide path control system of carrier-based UAV and its flight test. Flight Dynamics, 2012, 30(5):448-453 http://d.old.wanfangdata.com.cn/Periodical/fxlx201205016
    [58] Kahn A, Edwards D. Navigation, guidance and control for the CICADA expendable micro air vehicle. In: Proceedings of the 2012 AIAA Guidance, Navigation and Control Conference. Minneapolis, Minnesota, USA: AIAA, 2012.
    [59] Wang S, Zhen Z Y, Jiang J, Wang X H. Flight tests of autopilot integrated with fault-tolerant control of a small fixed-wing UAV. Mathematical Problems in Engineering, 2016, 2016: Article ID 2141482
    [60] Wang S, Zhen Z Y, Zheng F Y, Wang X H. Design of autonomous flight control system for small-scale UAV. In: Proceedings of the 2014 IEEE Chinese Guidance, Navigation and Control Conference. Yantai, China: IEEE, 2014. 1885-1888
    [61] Zhen Z Y, Jiang J, Wang X H, Wang D B. Information fusion-based optimal attitude control for an alterable thrust direction unmanned aerial vehicle. International Journal of Advanced Robotic System, 2013, 10(1):43 doi: 10.5772/54886
    [62] 甄子洋.预见控制理论及应用研究进展.自动化学报, 2016, 42(2):172-188 http://www.aas.net.cn/CN/abstract/abstract18808.shtml

    Zhen Zi-Yang. Research development in preview control theory and applications. Acta Automatica Sinica, 2016, 42(2):172-188 http://www.aas.net.cn/CN/abstract/abstract18808.shtml
    [63] 甄子洋, 王志胜, 王道波.基于信息融合估计的离散线性系统预见控制.自动化学报, 2010, 36(2):347-352 http://www.aas.net.cn/CN/abstract/abstract13523.shtml

    Zhen Zi-Yang, Wang Zhi-Sheng, Wang Dao-Bo. Information fusion estimation based preview control for discrete linear system. Acta Automatica Sinica, 2010, 36(2):347-352 http://www.aas.net.cn/CN/abstract/abstract13523.shtml
    [64] Zhen Z Y, Ma K, Kumar B A. Automatic carrier landing control for unmanned aerial vehicles based on preview control. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 34(4):413-419 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkhtdxxb-e201704011
    [65] 甄子洋, 邵敏敏, 龚华军, 江驹.一种基于鲁棒预见控制的舰载机自动着舰控制方法, 中国. ZL201510158509.3, 2017.

    Zhen Zi-Yang, Shao Min-Min, Gong Hua-Jun, Jiang Ju. Robust preview control based automatic carrier landing control for carrier-based aircraft, China. ZL201510158509.3, 2017.
    [66] Zhen Z Y, Jiang S Y, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2662-2674 doi: 10.1109/TAES.2018.2826398
    [67] Zhen Z Y, Jiang S Y, Ma K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering. Aerospace Science and Technology, 2018, 81:99-107 doi: 10.1016/j.ast.2018.07.039
    [68] 王硕, 甄子洋, 王新华, 江驹, 孙一力.一种舰载无人机自主着舰的飞行控制系统及方法, 中国. CN201410726947.0, 2015.

    Wang Shuo, Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Sun Yi-Li. Flight control system and method for carrier-based UAV autonomous landing, China. Patent CN201410726947. 0, 2015.
    [69] Denison N A. Automated Carrier Landing of an Unmanned Combat Aerial Vehicle Using Dynamic Inversion, Air Force Institute of Technology, USA, 2007.
    [70] Boskovic J D, Redding J. An autonomous carrier landing system for Unmannned Aerial Vehicles. In: Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference and Exhibit. Chicago, Illinois, USA: AIAA, 2009. 1-17
    [71] 李若兰, 甄子洋, 龚华军.基于趋近律滑模最优控制的无人机撞网回收轨迹控制.电光与控制, 2014, 21(9):58-60, 84 doi: 10.3969/j.issn.1671-637X.2014.09.013

    Li Ruo-Lan, Zhen Zi-Yang, Gong Hua-Jun. Trajectory control of a UAV during net recovery based on sliding mode control and optimal control. Electronics Optics and Control, 2014, 21(9):58-60, 84 doi: 10.3969/j.issn.1671-637X.2014.09.013
    [72] 郑峰婴, 龚华军, 甄子洋.基于积分滑模控制的无人机自动着舰系统.系统工程与电子技术, 2015, 37(7):1621-1628 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201507023

    Zheng Feng-Ying, Gong Hua-Jun, Zhen Zi-Yang. Carrier UAV autonomous landing system based on integral sliding mode control. Systems Engineering and Electronics, 2015, 37(7):1621-1628 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201507023
    [73] Zheng F Y, Gong H J, Zhen Z Y. Tradeoff analysis of factors affecting longitudinal carrier landing performance for small UAV based on backstepping controller. Transactions of Nanjing University of Aeronautics and Astronautics, 2015, 32(1):97-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkhtdxxb-e201501013
    [74] Goodwin G C, Graebe S F, Salgado M E. Control System Design. New Jersey:Prentice-Hall, 2001.
    [75] 甄子洋, 陶钢, 江驹, 王新华.无人机自动撞网着舰轨迹自适应跟踪控制.哈尔滨工程大学学报, 2017, 38(12):1922-1927 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201712015

    Zhen Zi-Yang, Tao Gang, Jiang Ju, Wang Xin-Hua. Adaptive tracking control of automatic net landing trajectory for carrier-based unmanned aerial vehicle. Journal of Harbin Engineering University, 2017, 38(12):1922-1927 http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201712015
    [76] 甄子洋, 王新华, 杨一栋.基于模型参考自适应控制的舰载无人机自动着舰控制装置, 中国. ZL201610917907.3, 2018.

    Zhen Zi-Yang, Wang Xin-Hua, Yang Yi-Dong. Carrier-based UAV automatic landing control device based on model reference adaptive control, China. Patent ZL201610917907.3, 2018.
    [77] Zheng F Y, Gong H J, Zhen Z Y. Adaptive constraint backstepping fault-tolerant control for small carrier-based unmanned aerial vehicle with uncertain parameters. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(3):407-425 doi: 10.1177/0954410015592169
    [78] Zheng F Y, Zhen Z Y, Gong H J. Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults. Journal of Systems Engineering and Electronics, 2017, 28(2):322-337 doi: 10.21629/JSEE.2017.02.14
    [79] Wadley J, Tallant G, Ruszkowski R. Adaptive flight control of a carrier based unmanned air vehicle. In: Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas, USA: AIAA, 2003. 1-9
    [80] Bourmistrova A, Khantsis S. Control system design optimisation via genetic programming. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore, Singapore: IEEE, 2007. 1993-2000
    [81] Kahn A. Adaptive control for small fixed-wing unmanned air vehicles. In: Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario, Canada: AIAA, 2010. 1-17
    [82] 甄子洋, 王新华, 江驹, 杨一栋.舰载机自动着舰引导与控制研究进展.航空学报, 2017, 38(2):1-22 http://d.old.wanfangdata.com.cn/Periodical/hkxb201702012

    Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Yang Yi-Dong. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):1-22 http://d.old.wanfangdata.com.cn/Periodical/hkxb201702012
    [83] Lin S G, Garratt M, Lambert A, Li P. 6DoF motion estimation for UAV landing on a moving shipdeck using real-time on-board vision. In: Proceedings of the 2015 Australasian Conference on Robotics and Automation. Canberra, ACT, Australia, 2015. 1-10
    [84] Khan A A, Marion K E, Bil C, Simic M. Motion prediction for ship-based autonomous air vehicle operations. In: Proceedings of the 2016 Intelligent Interactive Multimedia Systems and Services. Cham: Springer, 2016. 323-333
    [85] Moriarty P, Sheehy R, Doody P. Neural networks to aid the autonomous landing of a UAV on a ship. In: Proceedings of the 28th Irish Signals and Systems Conference. Killarney, Ireland: IEEE, 2017. 1-4
    [86] Koo S, Kim S, Suk J. Model predictive control for UAV automatic landing on moving carrier deck with heave motion. IFAC-Papers OnLine, 2015, 48(5):59-64 doi: 10.1016/j.ifacol.2015.06.464
    [87] 甄子洋, 邵敏敏, 龚华军, 王新华, 江驹.一种含舰尾气流补偿的舰载机自动着舰复合控制方法, 中国. ZL201510243842.4, 2017.

    Zhen Zi-Yang, Shao Min-Min, Gong Hua-Jun, Wang Xin-Hua, Jiang Ju. Airwake compen-sation based automatic carrier landing composite control for carrier-based aircraft: China. ZL201510243842.4. 2017.
    [88] 江驹, 甄子洋, 王新华, 杨一栋, 袁锁中, 焦鑫.抑制舰尾气流扰动的舰载机着舰引导与控制系统及方法, 中国. ZL201110287699.0, 2014.

    Jiang Ju, Zhen Zi-Yang, Wang Xin-Hua, Yang Yi-Dong, Yuan Suo-Zhong, Jiao Xin. Airwake disturbance rejection based carrier landing guidance and control system of carrier-based aircraft. ZL201110287699.0. 2014.
    [89] Ye L Q, Zong Q, Crassidis J L, Tian B L. Output-redefinition-based dynamic inversion control for a nonminimum phase hypersonic vehicle. IEEE Transactions on Industrial Electronics, 2018, 65(4):3447-3457 doi: 10.1109/TIE.2017.2760246
    [90] Apaza-Perez W A, Moreno J A, Fridman L M. Dissipative approach to sliding mode observers design for uncertain mechanical systems. Automatica, 2018, 87:330-336 doi: 10.1016/j.automatica.2017.10.016
    [91] Wang D D, Zong Q, Tian B L, Shao S K, Zhang X Y, Zhao X Y. Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Transactions, 2018, 73:208-226 doi: 10.1016/j.isatra.2017.12.011
    [92] Wang H Q, Shi P, Li H Y, Zhou Q. Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties. IEEE Transactions on Cybernetics, 2017, 47(10):3075-3087 doi: 10.1109/TCYB.2016.2607166
    [93] 甄子洋, 孙一力, 浦黄忠, 王道波.一种基于大脑情感学习的无人机推力变向智能控制方法, 中国. ZL201510264667.7, 2017.

    Zhen Zi-Yang, Sun Yi-Li, Pu Huang-Zhong, Wang Dao-Bo. UAV thrust vectoring intelligent control method based on brain emotion learning, China. Patent ZL201510264667.7, 2017.
    [94] Yu X, Li P, Zhang Y M. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Transactions on Industrial Electronics, 2018, 65(5):4135-4144 doi: 10.1109/TIE.2017.2772192
    [95] Klausen K, Moe J B, Van Den Hoorn J C, Gomola A, Fossen T I, Johansen T A. Coordinated control concept for recovery of a fixed-wing UAV on a ship using a net carried by multirotor UAVs. In: Proceedings of the 2016 International Conference on Unmanned Aircraft Systems. Arlington, VA, USA: IEEE, 2016. 964-973
    [96] Ryan J C. Investigating possible effects of UAVs on aircraft carrier deck operations. Humans and Automation Laboratory, Cambridge, MA, USA, 2011.
  • 加载中
图(3)
计量
  • 文章访问数:  5608
  • HTML全文浏览量:  728
  • PDF下载量:  1079
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-13
  • 录用日期:  2018-04-28
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回