2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污水处理决策优化控制

栗三一 乔俊飞 李文静 顾锞

栗三一, 乔俊飞, 李文静, 顾锞. 污水处理决策优化控制. 自动化学报, 2018, 44(12): 2198-2209. doi: 10.16383/j.aas.2018.c170257
引用本文: 栗三一, 乔俊飞, 李文静, 顾锞. 污水处理决策优化控制. 自动化学报, 2018, 44(12): 2198-2209. doi: 10.16383/j.aas.2018.c170257
LI San-Yi, QIAO Jun-Fei, LI Wen-Jing, GU Ke. Advanced Decision and Optimization Control for Wastewater Treatment Plants. ACTA AUTOMATICA SINICA, 2018, 44(12): 2198-2209. doi: 10.16383/j.aas.2018.c170257
Citation: LI San-Yi, QIAO Jun-Fei, LI Wen-Jing, GU Ke. Advanced Decision and Optimization Control for Wastewater Treatment Plants. ACTA AUTOMATICA SINICA, 2018, 44(12): 2198-2209. doi: 10.16383/j.aas.2018.c170257

污水处理决策优化控制

doi: 10.16383/j.aas.2018.c170257
基金项目: 

国家自然科学基金 61533002

国家杰出青年科学基金项目 61603009

详细信息
    作者简介:

    栗三一  北京工业大学信息学部博士研究生.主要研究方向为智能优化控制, 神经网络结构设计和优化.E-mail:wslisanyi@126.com

    李文静  博士, 北京工业大学信息学部副教授.主要研究方向为模块化神经网络设计.E-mail:wenjing.li@bjut.edu.cn

    顾锞  博士, 北京工业大学信息学部副教授.主要研究方向为质量感知和机器学习.E-mail:guke@bjut.edu.cn

    通讯作者:

    乔俊飞  博士, 北京工业大学信息学部教授.主要研究方向为智能控制, 神经网络分析与设计.本文通信作者.E-mail:junfeq@bjut.edu.cn

Advanced Decision and Optimization Control for Wastewater Treatment Plants

Funds: 

National Natural Science Foundation of China 61533002

National Science Fund for Distinguished Young Scholars 61603009

More Information
    Author Bio:

     Ph. D. candidate at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent optimization control, analysis and design of neural networks

     Ph. D., associate professor at the Faculty of Information Technology, Beijing University of Technology. Her research interest covers modular neural networks designing

     Ph. D., associate professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers quality perception and machine learning

    Corresponding author: QIAO Jun-Fei  Ph. D., professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control, analysis and design of neural networks. Corresponding author of this paper
  • 摘要: 以抑制出水氨氮浓度、总氮浓度峰值和降低能耗为目标,提出污水处理决策优化控制方法.首先利用神经网络建立出水氨氮和总氮预测模型;其次使用多目标进化算法得到溶解氧浓度和硝态氮浓度设定值;最后,根据出水氨氮和总氮浓度预测结果选择控制策略(优化控制和抑制控制).以仿真基准模型(BSM1)为平台,采用提出的决策优化控制方法进行控制,实验结果表明,该控制方法有效抑制了出水氨氮和总氮浓度峰值,出水超标时间和能耗明显少于所对比决策控制方法.
    1)  本文责任编委 赵千川
  • 图  1  14天不同区域氨氮浓度曲线

    Fig.  1  Ammonia nitrogen concentration curve in different regions within 14 days

    图  2  出水氨氮浓度预测模型

    Fig.  2  Prediction model of $S_{\rm {NH, e}}$

    图  3  出水总氮浓度预测模型

    Fig.  3  Prediction model of $S_{\rm {Ntot, e}}$

    图  4  出水氨氮浓度预测曲线

    Fig.  4  Prediction curve and actual curve of $S_{\rm {NH, e}}$

    图  5  出水总氮浓度预测曲线

    Fig.  5  Prediction curve and actual curve of $S_{\rm {Ntot, e}}$

    图  6  决策优化控制示意图

    Fig.  6  The proposed decision and optimization control system

    图  7  各出水水质浓度变化曲线

    Fig.  7  The change of water quality parameters

    图  8  $S_{\rm {NO, 2}}$设定值及跟踪曲线

    Fig.  8  Optimization and tracking results of $S_{\rm {NO, 2}}$

    图  9  $S_{\rm {O, 5}}$设定值及跟踪曲线

    Fig.  9  Optimization and tracking results of $S_{\rm {O, 5}}$

    图  10  出水TSS、BOD$_5$和COD浓度变化曲线

    Fig.  10  The curves of TSS, BOD$_5$ and COD of effluent

    图  11  决策优化控制与优化控制$S_{\rm {NH, e}}$变化曲线

    Fig.  11  The curves of $S_{\rm {NH, e}}$ with decision and optimization control system and optimization control system

    图  12  决策优化控制与优化控制$S_{\rm {Ntot, e}}$变化曲线

    Fig.  12  The curves of $S_{\rm {Ntot, e}}$ with decision and optimization control system and optimization control system

    图  13  $S_{\rm {O, 5}}$设定值及跟踪曲线

    Fig.  13  Optimization and tracking results of $S_{\rm {O, 5}}$

    图  14  $S_{\rm {NO, 2}}$设定值及跟踪曲线

    Fig.  14  Optimization and tracking results of $S_{\rm {NO, 2}}$

    图  15  $Q_{\rm {a}}$变化曲线

    Fig.  15  The curve of $Q_{\rm {a}}$

    图  16  $K_{\rm {La, 5}}$变化曲线

    Fig.  16  The curve of $K_{\rm {La, 5}}$

    表  1  不同区域到入水氨氮浓度最大时刻滞后时间(h)

    Table  1  The time lag from inflow to different regions (h)

    第二分区 第五分区 出水
    第1天 0.2375 1.1000 4.4375
    第2天 0.2375 1.3250 4.5750
    第3天 0.2375 1.1625 4.6000
    第4天 0.2375 1.3500 4.6875
    第5天 0.2375 1.1500 4.6500
    第6天 0.4875 1.5625 5.2875
    第7天 0.4875 1.6750 5.2750
    第8天 0.2375 1.1250 4.4875
    第9天 0.2375 1.3250 4.5750
    第10天 0.2375 1.1625 4.6000
    第11天 0.2375 1.3500 4.6875
    第12天 0.2375 1.1500 4.6500
    第13天 0.4875 1.5625 5.2875
    第14天 0.4875 1.6750 5.2750
    下载: 导出CSV

    表  2  预测模型测试均方根误差(10次实验平均值)

    Table  2  Test RMSE of prediction model (mean value of ten test results)

    方法 氨氮预测模型RMSE 总氮预测模型RMSE
    决策优化控制 0.4241 0.3506
    Santín[10] 0.9771 0.7515
    下载: 导出CSV

    表  3  SO,5模糊跟踪控制器模糊规则

    Table  3  Fuzzy rules of $S_{\rm {O, 5}}$ fuzzy controller

    E EC
    NB NS ZO PS PB
    NB PB PB PB PM ZO
    NM PB PB PM PS ZO
    NS PM PM PS ZO NS
    ZO PM PS ZO NS NS
    PS PS ZO NS NM NM
    PS ZO NS NM NB NB
    PB ZO NM NB NB NB
    下载: 导出CSV

    表  4  出水水质限制

    Table  4  Effluent quality limits

    水质 上限值(mg/l)
    $S_{\rm {NH, e}}$ 4
    $S_{\rm {Ntot, e}}$ 18
    TSS 30
    BOD$_5$ 10
    COD 100
    下载: 导出CSV

    表  5  不同算法控制效果比较(出水指标、能耗和水质)

    Table  5  Performance comparison for different control algorithms (effluent parameters, $OCI$ and $EQ$)

    算法 EC $OCI$ (kWh/d) $EQ$ (kg poll.Units/d)
    $S_{\rm NH}$ (mg/l) $S_{\rm Ntot}$ (mg/l) TSS (mg/l) BOD$_5$ (mg/l) COD (mg/l)
    F1 2.3037 16.8006 12.6219 2.6763 47.5114 3 909.5 6 080.9
    NSGA2-DLS 2.4389 17.5298 12.6200 2.6791 47.5189 3 688.1 6 203.9
    DPSO[18] 3.2387 14.9184 12.6227 2.6894 47.5503 3 702.3 6 180.3
    APSO[19] 3.1398 14.5995 12.9990 2.7660 48.0766 3 700.4 6 198.7
    ESN[20] 2.8723 15.6014 12.5917 2.6784 47.5114 3 756.8 6 134.5
    下载: 导出CSV

    表  6  不同$S_{\rm{NH, e}}$和$S_{\rm {Ntot, e}}$峰值抑制方法效果对比

    Table  6  Performance comparison for different $S_{\rm {NH, e}}$ and $S_{\rm {Ntot, e}}$ peak suppression methods

    方法 $OCI$
    (KWh/d)
    $EQ$ (kg poll.Units/d) $P$($S_{\rm{NH, e}}$)
    (%)
    $P$($S_{\rm {Ntot, e}}$)
    (%)
    决策优化控制 5 526.7 5 797.1 0 0
    F2 6 268.6 5 350.1 0.74 0.77
    Jeppsson 9 447.24 5 577.97 0.41 1.18
    Nopens 9 348 5 447 0.92 *
    Flores-Alsina 8 024.5 5 022.5 0.2 0.25
    Santín 6 289.59 5 318.95 0.15 0.0046
    下载: 导出CSV
  • [1] Cristea S, de Prada C, Sarabia D, Gutiérrez G. Aeration control of a wastewater treatment plant using hybrid NMPC. Computers and Chemical Engineering, 2011, 35(4):638-650 doi: 10.1016/j.compchemeng.2010.07.021
    [2] 乔俊飞, 韩改堂, 周红标.基于知识的污水生化处理过程智能优化方法.自动化学报, 2017, 43(6):1038-1046 http://www.aas.net.cn/CN/abstract/abstract19079.shtml

    Qiao Jun-Fei, Han Gai-Tang, Zhou Hong-Biao. Knowledge-based intelligent optimal control for wastewater biochemical treatment process. Acta Automatica Sinica, 2017, 43(6):1038-1046 http://www.aas.net.cn/CN/abstract/abstract19079.shtml
    [3] Han H G, Qiao J F. Adaptive dissolved oxygen control based on dynamic structure neural network. Applied Soft Computing, 2011, 11(4):3812-3820 doi: 10.1016/j.asoc.2011.02.014
    [4] Mulas M, Tronci S, Corona F, Haimi H, Lindell P, Heinonen M, Vahala R, Baratti R. Predictive control of an activated sludge process:an application to the Viikinmäki wastewater treatment plant. Journal of Process Control, 2015, 35:89-100 doi: 10.1016/j.jprocont.2015.08.005
    [5] Santín I, Pedret C, Vilanova R. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process. Journal of Process Control, 2015, 28:40-55 doi: 10.1016/j.jprocont.2015.02.005
    [6] Egea J A, Gracia I. Dynamic multiobjective global optimization of a waste water treatment plant for nitrogen removal. IFAC Proceedings Volumes, 2012, 45(2):374-379 doi: 10.3182/20120215-3-AT-3016.00066
    [7] Yang T, Qiu W, Ma Y, Chadli M, Zhang L X. Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes. Neurocomputing, 2014, 136:88-95 doi: 10.1016/j.neucom.2014.01.025
    [8] Vega P, Revollar S, Francisco M, Martín J M. Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Computers and Chemical Engineering, 2014, 68:78-95 doi: 10.1016/j.compchemeng.2014.03.027
    [9] Han H G, Qian H H, Qiao J F. Nonlinear multiobjective model-predictive control scheme for wastewater treatment process. Journal of Process Control, 2014, 24(3):47-59 doi: 10.1016/j.jprocont.2013.12.010
    [10] Santín I, Pedret C, Vilanova R, Meneses M. Advanced decision control system for effluent violations removal in wastewater treatment plants. Control Engineering Practice, 2016, 49:60-75 doi: 10.1016/j.conengprac.2016.01.005
    [11] Vilanova R, Katebi R, Wahab N. N-removal on wastewater treatment plants:a process control approach. Journal of Water Resource and Protection, 2011, 3(1):1-11 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c11ccadf6598f6d3302cd38accd1e1b3
    [12] 栗三一, 李文静, 乔俊飞.一种基于密度的局部搜索NSGA2算法.控制与决策, 2018, 33(1):60-66 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201801007

    Li San-Yi, Li Wen-Jing, Qiao Jun-Fei. A local search strategy based on density for NSGA2 algorithm. Control and Decision, 2018, 33(1):60-66 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201801007
    [13] Jeppsson U, Pons M N. The COST benchmark simulation model-current state and future perspective. Control Engineering Practice, 2004, 12(3):299-304 doi: 10.1016/j.conengprac.2003.07.001
    [14] Qiao J F, Li S Y, Li W J. Mutual information based weight initialization method for sigmoidal feedforward neural networks. Neurocomputing, 2016, 207:676-683 doi: 10.1016/j.neucom.2016.05.054
    [15] Farajzadeh J, Fard A F, Lotfi S. Modeling of monthly rainfall and runoff of Urmia lake basin using "feed-forward neural network" and "time series analysis" model. Water Resources and Industry, 2014, 7-8:38-48 doi: 10.1016/j.wri.2014.10.003
    [16] 乔俊飞, 薄迎春, 韩广.基于ESN的多指标DHP控制策略在污水处理过程中的应用.自动化学报, 2013, 39(7):1146-1151 http://www.aas.net.cn/CN/abstract/abstract18144.shtml

    Qiao Jun-Fei, Bo Ying-Chun, Han Guang. Application of ESN-based multi indices dual heuristic dynamic programming on wastewater treatment process. Acta Automatica Sinica, 2013, 39(7):1146-1151 http://www.aas.net.cn/CN/abstract/abstract18144.shtml
    [17] 韩红桂, 张璐, 乔俊飞.一种基于自适应回归核函数的污水处理能耗模型.化工学报, 2016, 67(3):947-953 http://d.old.wanfangdata.com.cn/Periodical/hgxb201603042

    Han Hong-Gui, Zhang Lu, Qiao Jun-Fei. An energy consumption model of wastewater treatment process based on adaptive regressive kernel function. CIESC Journal, 2016, 67(3):947-953 http://d.old.wanfangdata.com.cn/Periodical/hgxb201603042
    [18] Messac A, Ismail-Yahaya A, Mattson C A. The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 2003, 25(2):86-98 doi: 10.1007/s00158-002-0276-1
    [19] Zeng G Q, Chen J, Li L M, Chen M R, Wu L, Dai Y X, Zheng C W. An improved multi-objective population-based extremal optimization algorithm with polynomial mutation. Information Sciences, 2016, 330:49-73 doi: 10.1016/j.ins.2015.10.010
    [20] 史雄伟, 乔俊飞, 苑明哲.基于改进粒子群优化算法的污水处理过程优化控制.信息与控制, 2011, 40(5):698-703 http://d.old.wanfangdata.com.cn/Periodical/xxykz201105021

    Shi Xiong-Wei, Qiao Jun-Fei, Yuan Ming-Zhe. Optimal control for wastewater treatment process based on improved particle swarm optimization algorithm. Information and Control, 2011, 40(5):698-703 http://d.old.wanfangdata.com.cn/Periodical/xxykz201105021
    [21] 乔俊飞, 逄泽芳, 韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制.智能系统学报, 2012, 7(5):429-436 doi: 10.3969/j.issn.1673-4785.201205034

    Qiao Jun-Fei, Pang Ze-Fang, Han Hong-Gui. Neural network optimal control for wastewater treatment process based on APSO. CAAI Transactions on Intelligent Systems, 2012, 7(5):429-436 doi: 10.3969/j.issn.1673-4785.201205034
    [22] 乔俊飞, 王莉莉, 韩红桂.基于ESN的污水处理过程优化控制.智能系统学报, 2015, 10(6):831-837 http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201506002

    Qiao Jun-Fei, Wang Li-Li, Han Hong-Gui. Optimal control for wastewater treatment process based on ESN neural network. CAAI Transactions on Intelligent Systems, 2015, 10(6):831-837 http://d.old.wanfangdata.com.cn/Periodical/xdkjyc201506002
    [23] Jeppsson U, Pons M N, Nopens I, Alex J, Copp J B, Gernaey K V, Rosen C, Steyer J P, Vanrolleghem P A. Benchmark simulation model No 2:general protocol and exploratory case studies. Water Science and Technology, 2007, 56(8):67-78 doi: 10.2166/wst.2007.604
    [24] Nopens I, Benedetti L, Jeppsson U, Pons M N, Alex J, Copp J B, Gernaey K V, Rosen C, Steyer J P, Vanrolleghem P A. Benchmark simulation model No 2:finalisation of plant layout and default control strategy. Water Science and Technology, 2010, 62(9):1967-1974 doi: 10.2166/wst.2010.044
    [25] Flores-Alsina X, Comas J, Rodríguez R I, Poch M, Gernaey K V, Jeppsson U. Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge. Water Science and Technology, 2009, 60(8):2093-2103 doi: 10.2166/wst.2009.523
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  2728
  • HTML全文浏览量:  451
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 录用日期:  2017-08-02
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回