2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模式失配条件下连续时间控制系统的零控脱靶量估计误差分布

项盛文 范红旗 付强

项盛文, 范红旗, 付强. 模式失配条件下连续时间控制系统的零控脱靶量估计误差分布. 自动化学报, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251
引用本文: 项盛文, 范红旗, 付强. 模式失配条件下连续时间控制系统的零控脱靶量估计误差分布. 自动化学报, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251
XIANG Sheng-Wen, FAN Hong-Qi, FU Qiang. Distribution of Zero-effort Miss Distance Estimation Errors in Continuous-time Controlled System With Mode Mismatch. ACTA AUTOMATICA SINICA, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251
Citation: XIANG Sheng-Wen, FAN Hong-Qi, FU Qiang. Distribution of Zero-effort Miss Distance Estimation Errors in Continuous-time Controlled System With Mode Mismatch. ACTA AUTOMATICA SINICA, 2018, 44(10): 1824-1832. doi: 10.16383/j.aas.2018.c170251

模式失配条件下连续时间控制系统的零控脱靶量估计误差分布

doi: 10.16383/j.aas.2018.c170251
详细信息
    作者简介:

    项盛文  国防科技大学博士研究生.主要研究方向为制导, 导航, 控制.E-mail:xiangsw224@163.com

    付强  国防科技大学教授.主要研究方向为雷达信号处理与目标识别.E-mail:fuqiang1962@vip.sina.com

    通讯作者:

    范红旗  国防科技大学副教授.主要研究方向为雷达信号处理, 目标跟踪, 导引控制, 信息融合.本文通信作者.E-mail:fanhongqi@nudt.edu.cn

Distribution of Zero-effort Miss Distance Estimation Errors in Continuous-time Controlled System With Mode Mismatch

More Information
    Author Bio:

     Ph. D. candidate at National University of Defense Technology. His research interest covers guidance, navigation, and control

     Professor at National University of Defense Technology. His research interest covers radar signal processing and target recognition

    Corresponding author: FAN Hong-Qi  Associate professor at National University of Defense Technology. His research interest covers radar signal processing, target tracking, guidance, and control, and information fusion. Corresponding author of this paper.
  • 摘要: 针对大机动目标拦截中零控脱靶量(Zero-effort miss distance,ZEM)估计误差分布的求解问题,在线性估计器与独立模式辨识器的配置下,提出了一种解析求解方法.在存在固定的模式辨识延迟下,ZEM的估计误差服从有偏的高斯分布.最后,通过与蒙特卡洛仿真的比较,验证了本文方法的正确性.
    1)  本文责任编委 倪茂林
  • 图  1  平面拦截几何

    Fig.  1  Planer interception geometry

    图  2  目标横向加速度指令模型集

    Fig.  2  Mode-set of the evader's lateral acceleration command

    图  3  一种典型的制导系统结构

    Fig.  3  A typical structure of guidance system

    图  4  模式切换和模式辨识器输出示意图

    Fig.  4  Diagram of mode switch and decision-maker output

    图  5  ZEM估计误差的均值

    Fig.  5  Mean of ZEM estimation error

    图  6  ZEM估计误差的方差

    Fig.  6  Variance of ZEM estimation error

    图  7  各状态估计误差

    Fig.  7  Estimation error of every state

    表  1  仿真参数

    Table  1  Simulation parameters

    参数类型 参数名称 单位 值(范围)
    弹目参数 ${V_p}$ m/s 2 300
    ${V_e}$ m/s 2 700
    $a_p^{\max}$ g 30
    $a_e^{\max}$ g 12, 15
    ${\tau _p}$ s 0.2
    ${\tau _e}$ s 0.2
    观测参数 T s 0.01
    ${\sigma _\theta }$ mrad 5
    ${\sigma _a }$ $\rm m/{\rm s}^2$ 1
    场景参数 $r_0$ m 15 000
    ${\phi_p}(0)$ rad 均匀分布($-\pi /18, \pi /18$)
    ${\phi_e}(0)$ rad $ > \pi /2$且满足碰撞三角形
    ${u _p}(0)$ g 0
    ${a_p}(0)$ g 0
    ${a_e}(0)$ g $a_e^{\max}$
    目标机动方式 - 随机乒乓
    估计器参数 $s_w$ $\rm g^2\rm{/Hz}$ 1
    $t_{sw}$ s 2
    $\Delta t$ s 0.1
    初始状态 - ${{\hat {\pmb x}}_0} = {[0, 0, 0, 0]^{\rm T}}$
    初始估计误差 - ${{\tilde {\pmb x}}_0} = {[0, 0, a_e^{\max}, 0]^{\rm T}}$
    初始估计协方差 - ${{{\tilde P}}_0} = \left[{\begin{array}{*{20}{c}} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 &{{{(a_e^{\max})}^2}}& 0\\ 0 & 0 & 0 & 0 \end{array}} \right]$
    下载: 导出CSV
    符号说明
    $P$ 导弹
    $E$ 目标
    $\tau_p$, $\tau_e$ 导弹和目标控制系统的时间常数
    $a_p^{\max}, a_e^{\max}$ 导弹和目标最大横向加速度
    ${V_p}, {V_e}$ 导弹和目标的飞行速度
    ${u_p}, {u_e}$ 导弹和目标的横向加速度指令
    $r$ 弹目相对距离
    ${t_{sw}}$ 目标模式切换时刻
    $t$ 仿真时间
    ${t_f}$ 终止时刻
    g 重力加速度, $9.8\rm m/{\rm{s}^2}$
    $m$ 目标的运动模式
    ${m_1}, {m_2}$ 目标在模式切换时刻前后的运动模式
    $\Delta m$ 目标运动模式改变量, $\Delta m = {m_2} - {m_1}$
    $T$ 离散采样时间间隔
    ${\sigma _\theta }$ 测角精度
    ${\sigma _a}$ 导弹加速度测量精度
    ${s_w}$ 目标指令加速度误差的功率谱密度
    $\Delta t$ 目标运动模式辨识延迟
    ${\tilde {\pmb x}}$ 状态估计误差
    ${\pmb \xi }, {\Sigma}$ 状态估计误差的均值和方差
    $\eta (t)$ ZEM估计误差
    $\mu, {\sigma ^2}$ ZEM估计误差的均值和方差
    下载: 导出CSV
  • [1] Shinar J, Turetsky V. Three-dimensional validation of an integrated estimation/guidance algorithm against randomly maneuvering targets. Journal of Guidance, Control, and Dynamics, 2014, 32(3):1034-1039 doi: 10.2514/1.40542
    [2] Shinar J, Shima T. Nonorthodox guidance law development approach for intercepting maneuvering targets. Journal of Guidance, Control, and Dynamics, 2002, 25(4):658-666 doi: 10.2514/2.4960
    [3] Shinar J, Turetsky V. Meeting the challenges of modern interceptor guidance by non-conventional approaches. In: Proceedings of the 17th Mediterranean Conference on Control and Automation. Thessaloniki, Greece: IEEE, 2009. 1563-1568 http://ieeexplore.ieee.org/document/5164770/
    [4] Shinar J, Oshman Y, Turetsky V. On the need for integrated estimation/guidance design for hit-to-kill accuracy. In: Proceedings of the 2003 American Control Conference. Denver, CO, USA: IEEE, 2003, 1: 402-407
    [5] Witsenhausen H S. Separation of estimation and control for discrete time system. Proceedings of the IEEE, 1971, 59(11):1557-1566 doi: 10.1109/PROC.1971.8488
    [6] Alexandre P. Multiple Model Estimation and Detection for Adaptive Guidance of Hybrid Systems [Master dissertation], McGill University, Canada, 2004.
    [7] Glizer V Y, Turetsky V, Shinar J. Terminal cost distribution in discrete-time controlled system with disturbance and noise-corrupted state information. International Journal of Applied Mathematics, 2012, 42(1):52-59 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_9728187a2dae195516565edae35386af
    [8] Shinar J, Glizer V Y, Turetsky V. Distribution of terminal cost functional in continuous-time controlled system with noise-corrupted state information. In: Proceedings of the 27th Convention of Electrical & Electronics Engineers in Israel. Eilat, Israel: IEEE, 2011. 1-5 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6377008
    [9] Shinar J, Glizer V Y, Turetsky V. Terminal state distribution of continuous-time system with random disturbance and noise-corrupted information. International Journal of Applied Mathematics, 2015, 45(2):77-84
    [10] Glizer V Y, Turetsky V, Shinar J. Distribution of terminal cost functional in discrete-time controlled system with noise-corrupted state information. In: Proceedings of the 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI). London, UK: IEEE, 2012.
    [11] Moldavskaya E, Shinar J. Distribution of the zero-effort miss distance estimation error in interception problems. Applied Mathematics and Computation, 2015, 269:217-231 doi: 10.1016/j.amc.2015.07.073
    [12] Shinar J, Turetsky V, Oshman Y. New logic-based estimation/guidance algorithm for improved homing against randomly maneuvering targets. In: Proceedings of the 2014 AIAA Guidance, Navigation and Control Conference. Providence, Rhode Island: AIAA, 2004. 1-17 doi: 10.2514/6.2004-4886
    [13] Dionne D, Michalska H, Shinar J, et al. Decision-directed adaptive estimation and guidance for an interception endgame. Journal of Guidance, Control, and Dynamics, 2015, 29(4):970-980 doi: 10.2514/1.16050
    [14] Shinar J, Turetsky V, Oshman Y. Integrated estimation/guidance design approach for improved homing against randomly maneuvering targets. Journal of Guidance, Control, and Dynamics, 2007, 30(1):154-161 doi: 10.2514/1.22916
    [15] 范红旗.主动寻的制导中机动目标运动模式辨识技术博士学位论文, 国防科学技术大学, 中国, 2008.

    Fan Hong-Qi. Technology on Maneuvering Target Motion Mode Identification in Active Homing Guidance [Ph. D. dissertation], National University of Defense Technology, China, 2008.
    [16] Author(s) Zhu Y L, Fan H Q, Fan J P, Lu Z Q, Fu Q. Target turning maneuver detection using high resolution doppler profile. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 762-779 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6129669
    [17] Bizup D F, Brown D E. Maneuver detection using the radar range rate measurement. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1):330-336 doi: 10.1109/TAES.2004.1292169
    [18] Hughes E J, Leyland M. Target manoeuvre detection using radar glint. Electronics Letters, 1998, 34(17):1695-1696 doi: 10.1049/el:19981188
    [19] Fan H Q, Zhu Y L, Fu Q. Impact of mode decision delay on estimation error for maneuvering target interception. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1):702-711 doi: 10.1109/TAES.2011.5705700
    [20] Turetsky V, Shinar J. Missile guidance laws based on pursuit-evasion game formulations. Automatica, 2003, 39(4):607-618 doi: 10.1016/S0005-1098(02)00273-X
    [21] 李运迁, 齐乃明.基于零控脱靶量的大气层内拦截弹制导律.宇航学报, 2010, 31(7):1768-1774 doi: 10.3873/j.issn.1000-1328.2010.07.011

    Li Yun-Qian, Qi Nai-Ming. A zero-effort miss distance-based guidance law for endoatmoshperic interceptor. Journal of Astronautics, 2010, 31(7):1768-1774 doi: 10.3873/j.issn.1000-1328.2010.07.011
    [22] Blair W D, Watson G A, Kirubarajan T, Bar-Shalom Y. Benchmark for radar allocation and tracking in ECM. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4):1097-1114 doi: 10.1109/7.722694
    [23] Li X R, He C. Model-set design, choice, and comparison for multiple-model estimation. In: Proceedings of SPIE 3809 International Symposium on Optical Science, Engineering, and Instrumentation. Denver, CO, USA: SPIE, 1999. 501-513 http://spie.org/x648.xml?product_id=364047
    [24] Baram Y, Sandell N. An information theoretic approach to dynamical systems modeling and identification. IEEE Transactions on Automatic Control, 1978, 23(1):61-66 doi: 10.1109/TAC.1978.1101690
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2145
  • HTML全文浏览量:  229
  • PDF下载量:  825
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 录用日期:  2017-08-17
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回