2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于细节层分离的单曝光HDR图像生成算法

张红英 朱恩弘 吴亚东

张红英, 朱恩弘, 吴亚东. 一种基于细节层分离的单曝光HDR图像生成算法. 自动化学报, 2019, 45(11): 2159-2170. doi: 10.16383/j.aas.2018.c170233
引用本文: 张红英, 朱恩弘, 吴亚东. 一种基于细节层分离的单曝光HDR图像生成算法. 自动化学报, 2019, 45(11): 2159-2170. doi: 10.16383/j.aas.2018.c170233
ZHANG Hong-Ying, ZHU En-Hong, WU Ya-Dong. High Dynamic Range Image Generating Algorithm Based on Detail Layer Separation of a Single Exposure Image. ACTA AUTOMATICA SINICA, 2019, 45(11): 2159-2170. doi: 10.16383/j.aas.2018.c170233
Citation: ZHANG Hong-Ying, ZHU En-Hong, WU Ya-Dong. High Dynamic Range Image Generating Algorithm Based on Detail Layer Separation of a Single Exposure Image. ACTA AUTOMATICA SINICA, 2019, 45(11): 2159-2170. doi: 10.16383/j.aas.2018.c170233

一种基于细节层分离的单曝光HDR图像生成算法

doi: 10.16383/j.aas.2018.c170233
基金项目: 

西南科技大学龙山人才计划 17LZX445

国家自然科学基金 61303127

四川省科技厅项目 2014SZ0223

西南科技大学龙山人才计划 17LZX426

四川省科技厅项目 2015GZ0212

详细信息
    作者简介:

    张红英   西南科技大学信息工程学院教授.2006年获得电子科技大学博士学位.主要研究方向图像处理, 计算机视觉和模式识别.E-mail:zhywyd@163.com

    朱恩弘  西南科技大学信息工程学院硕士研究生.2013年获得西南科技大学信息工程学院学士学位.主要研究方向为图像处理与模式识别.E-mail:enhongzhu@gmail.com

    通讯作者:

    吴亚东   西南科技大学计算机科学与技术学院教授.2006年获得电子科技大学博士学位.主要研究方向为可视化与可视分析, 虚拟现实与人机交互, 视觉计算.本文通信作者.E-mail:wuyadong@swust.edu.cn

High Dynamic Range Image Generating Algorithm Based on Detail Layer Separation of a Single Exposure Image

Funds: 

Longshan Talent Plan Foundation of Southwest University of Science and Technology 17LZX445

National Natural Science Foundation of China 61303127

Project of Science and Technology Department of Sichuan Province 2014SZ0223

Longshan Talent Plan Foundation of Southwest University of Science and Technology 17LZX426

Project of Science and Technology Department of Sichuan Province 2015GZ0212

More Information
    Author Bio:

      Professor at the School of Information Engineering, Southwest University of Science and Technology. She received her Ph. D. degree from University of Electronic Science and Technology of China in 2006. Her research interest covers image processing, computer vision, and pattern recognition

       Master student at the School of Information Engineering, Southwest University of Science and Technology. He received his bachelor degree from Southwest University of Science and Technology in 2013. His research interest covers image processing and pattern recognition

    Corresponding author: WU Ya-Dong   Professor at the School of Computer Science and Technology, Southwest University of Science and Technology. He received his Ph.D. degree from University of Electronic Science and Technology of China in 2006. His research interest covers visualization and visual analytics, virtual reality and human computer interaction, and computer vision. Corresponding author of this paper
  • 摘要: 针对利用单幅低动态范围(Low dynamic range,LDR)图像生成高动态范围(High dynamic range,HDR)图像细节信息不足的问题,本文提出了一种基于细节层分离的单曝光HDR图像生成算法.该算法基于人类视觉系统模型,首先分别提取出LDR图像的亮度分量和色度分量,对伽马校正后的亮度分量进行双边滤波,提取出亮度分量的基本层,再对基本层和亮度分量进行遍历运算,得到亮度分量的细节层;然后,构造反色调映射函数,分别对细节层和伽马校正后的亮度图像进行扩展,得到各自的反色调映图像;之后,将反色调映射后亮度分量与压缩后的细节层进行融合,得到新的亮度分量.最后,融合色度分量与新的亮度分量,并对融合后图像进行去噪,得到最终的HDR图像.实验表明该算法能挖掘出部分隐藏的图像细节信息,处理效果较好,运行效率高,具有较好的鲁棒性.
    Recommended by Associate Editor HUANG Qing-Ming
    1)  本文责任编委 黄庆明
  • 图  1  算法总体框图

    Fig.  1  Block diagram of the algorithm

    图  2  伽马变换函数

    Fig.  2  Gamma transform function

    图  3  空间域滤波和值域滤波对应图示

    Fig.  3  Corresponding figure of spatial filtering and range filtering

    图  4  细节层分离结果图

    Fig.  4  Results of the detail layer separation

    图  5  试验用图

    Fig.  5  Test image

    图  6  反色调映射处理对比图

    Fig.  6  Comparison image after the inverse tone mapping

    图  7  融合结果对比

    Fig.  7  Comparison result

    图  8  几种算法结果对比

    Fig.  8  Comparison results of several algorithms

    图  9  白顶建筑LDR图像序列

    Fig.  9  LDR image sequences of white top architecture

    图  10  本文算法处理与实测数据对比

    Fig.  10  Comparisons of our algorithm and ground truth

    图  11  几种算法DRIM对比图

    Fig.  11  DRIM comparisons of several algorithms

    图  12  几种算法DRIM对比图

    Fig.  12  DRIM comparisons of several algorithms

    表  1  处理前后动态范围对比

    Table  1  Comparisons of dynamic range

    图像对 动态范围
    原图像 2
    处理后图像 6
    下载: 导出CSV

    表  2  DRIM对比图中红、绿、蓝各像素点所占百分比(%)

    Table  2  Percentage of red pixel, green pixel and blue pixel in DRIM (%)

    DRIM 算法 (Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ) (Ⅴ) (Ⅵ) (Ⅶ) 平均值
    Akyuz 6.26 26.84 7.45 25.72 9.5 1.27 2.71 11.39
    Banterl 3.58 26.02 5.37 27.41 9.68 1.98 1.55 10.79
    Red Huo 1.58 20.38 8.42 10.56 4.49 5.38 1.42 7.46
    Zhu 2.23 23.01 4.89 15.36 8.13 1.03 1.58 8.03
    本文 2.03 22.76 4.34 17.35 8.11 2.74 1.4 8.39
    Akyuz 48.13 22.78 19.1 12.84 13.53 5.27 23.34 20.71
    Banterl 34.2 15.98 8.02 13.99 13.25 4.32 21.34 15.87
    Green Huo 20.27 4.48 19.39 5.93 7.63 5.45 30.63 13.39
    Zhu 17.02 5.72 5.3 17.47 16.38 3.21 10.23 10.76
    本文 10.83 5.16 4.34 9.74 14.64 3.47 12.82 8.71
    Akyuz 24.19 42.21 16.17 10.37 8.37 9.37 3.95 16.37
    Banterl 25.61 37.48 24.18 12.46 9.09 10.36 5.25 17.77
    Blue Huo 21.84 36.37 20.71 9.96 4.27 10.32 4.84 15.47
    Zhu 26.87 37.29 33.19 13.09 10.63 15.43 5.94 20.34
    本文 28.32 38.28 32.48 12.88 10.44 19.73 5.66 21.11
    下载: 导出CSV

    表  3  图像处理后动态范围对比

    Table  3  Comparisons of dynamic range

    图像 Akyuz Banterl Huo Zhu 本文
    (Ⅰ) $7.8 \times 10^4$ $3.2 \times 10^5$ $2.4 \times 10^6$ $6.7 \times 10^6$ $2.5 \times 10^6$
    (Ⅱ) $3.2 \times 10^4$ $1.2 \times 10^5$ $1.2 \times 10^6$ $4.5 \times 10^6$ $1.1 \times 10^6$
    (Ⅲ) $4.3 \times 10^5$ $2.1 \times 10^6$ $9.4 \times 10^6$ $1.6 \times 10^7$ $9.8 \times 10^6$
    (Ⅳ) $7.1 \times 10^4$ $2.7 \times 10^5$ $2.1 \times 10^6$ $5.3 \times 10^6$ $2.0 \times 10^6$
    (Ⅴ) $3.5 \times 10^4$ $1.5 \times 10^5$ $1.3 \times 10^6$ $4.9 \times 10^6$ $1.2 \times 10^6$
    (Ⅵ) $5.0 \times 10^4$ $2.1 \times 10^5$ $1.8 \times 10^6$ $1.9 \times 10^6$ $1.7 \times 10^6$
    (Ⅶ) $6.8 \times 10^4$ $2.9 \times 10^5$ $2.1 \times 10^6$ $5.8 \times 10^6$ $1.8 \times 10^6$
    下载: 导出CSV
  • [1] 陆许明, 朱雄泳, 李智文, 麦建业, 谭洪舟.一种亮度可控与细节保持的高动态范围图像色调映射方法.自动化学报, 2015, 41(6):1080-1092 http://www.aas.net.cn/CN/abstract/abstract18683.shtml

    Lu Xu-Ming, Zhu Xiong-Yong, Li Zhi-Wen, Mai Jian-Ye, Tan Hong-Zhou. A brightness-scaling and detail-preserving tone mapping method for high dynamic range images. Acta Automatica Sinica, 2015, 41(6):1080-1092 http://www.aas.net.cn/CN/abstract/abstract18683.shtml
    [2] 杨克虎, 姬靖, 郭建军, 郁文生.高动态范围图像和色阶映射算子.自动化学报, 2009, 35(2):113-122 http://www.aas.net.cn/CN/abstract/abstract17906.shtml

    Yang Ke-Hu, Ji Jing, Guo Jian-Jun, Yu Wen-Sheng. High dynamic range images and tone mapping operator. Acta Automatica Sinica, 2009, 35(2):113-122 http://www.aas.net.cn/CN/abstract/abstract17906.shtml
    [3] Sun M Z, Shi M Y. A HDRI display algorithm based on image color appearance model. In: Proceedings of the 15th International Conference on Computer and Information Science. Okayama, Japan: IEEE, 2016. 1-6
    [4] Huo Y Q, Yang F. High-dynamic range image generation from single low-dynamic range image. IET Image Processing, 2016, 10(3):198-205 doi: 10.1049/iet-ipr.2014.0782
    [5] Huo Y Q, Zhang X D. Single image-based HDR imaging with CRF estimation. In: Proceedings of the 2016 International Conference On Communication Problem-Solving (ICCP). Taipei, China: IEEE, 2016. 1-3
    [6] Oh T H, Lee J Y, Tai Y W, Kweon I S. Robust high dynamic range imaging by rank minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6):1219-1232 doi: 10.1109/TPAMI.2014.2361338
    [7] Kuo P H, Tang C S, Chien S Y. Content-adaptive inverse tone mapping. In: Proceedings of the 2012 IEEE Visual Communications and Image Processing. San Diego, CA, USA: IEEE, 2012. 1-6
    [8] Le Pendu M, Guillemot C, Thoreau D. Local inverse tone curve learning for high dynamic range image scalable compression. IEEE Transactions on Image Processing, 2015, 24(12):5753-5763 doi: 10.1109/TIP.2015.2483899
    [9] 霍永青, 彭启琮.高动态范围图像及反色调映射算子.系统工程与电子技术, 2012, 34(4):821-826 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201204032

    Huo Yong-Qing, Peng Qi-Cong. High dynamic range images and reverse tone mapping operators. Systems Engineering and Electronics, 2012, 34(4):821-826 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201204032
    [10] Daly S J, Feng X F. Bit-depth extension using spatiotemporal microdither based on models of the equivalent input noise of the visual system. In: Proceedings of SPIE Volume 5008, Color Imaging Ⅷ: Processing, Hardcopy, and Applications. Santa Clara, CA, United States: SPIE, 2003. 455-466
    [11] Daly S J, Feng X F. Decontouring: prevention and removal of false contour artifacts. In: Proceedings of the SPIE Volume 5292, Human Vision and Electronic Imaging IX. San Jose, California, United States: SPIE, 2004. 130-149
    [12] Banterle F, Debattista K, Artusi A, Pattanaik S, Myszkowski K, Ledda P, Chalmers A. High dynamic range imaging and low dynamic range expansion for generating HDR content. Computer Graphics Forum, 2009, 28(8):2343-2367 doi: 10.1111/j.1467-8659.2009.01541.x
    [13] Akyüz A O, Fleming R, Riecke B E, Reinhard E, Bülthoff H H. Do HDR displays support LDR content?: a psychophysical evaluation. ACM Transactions on Graphics, 2007, 26(3): Article No. 38
    [14] Hsia S C, Kuo T T. High-performance high dynamic range image generation by inverted local patterns. IET Image Processing, 2015, 9(12):1083-1091 doi: 10.1049/iet-ipr.2014.0853
    [15] Didyk P, Mantiuk R, Hein M, Seidel H P. Enhancement of bright video features for HDR displays. Computer Graphics Forum, 2008, 27(4):1265-1274 doi: 10.1111/j.1467-8659.2008.01265.x
    [16] Martin M, Fleming R, Sorkine O, Gutierrez D. Understanding exposure for reverse tone mapping. In: Proceedings of the Congreso Español de Informática Gráfica. Aire-la-Ville, Switzerland: Eurographics Association, 2008. 189-198
    [17] Banterle F, Ledda P, Debattista K, Chalmers A, Bloj M. A framework for inverse tone mapping. The Visual Computer, 2007, 23(7):467-478 doi: 10.1007/s00371-007-0124-9
    [18] Banterle F, Ledda P, Debattista K, Chalmers A. Expanding low dynamic range videos for high dynamic range applications. In: Proceedings of the 24th Spring Conference on Computer Graphics. Budmerice, Slovakia: ACM, 2010. 33-41
    [19] Wang L D, Wei L Y, Zhou K, Guo B N, Shum H Y. High dynamic range image hallucination. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games. San Diego, California: ACM, 2007. Article No. 72
    [20] Celebi A T, Duvar R, Urhan O. Fuzzy fusion based high dynamic range imaging using adaptive histogram separation. IEEE Transactions on Consumer Electronics, 2015, 61(1):119-127 doi: 10.1109/TCE.2015.7064119
    [21] Huo Y Q, Yang F, Dong L, Brost V. Physiological inverse tone mapping based on retina response. The Visual Computer, 2014, 30(5):507-517 doi: 10.1007/s00371-013-0875-4
    [22] 朱恩弘, 张红英, 吴亚东, 霍永青.单幅图像的高动态范围图像生成方法.计算机辅助设计与图形学学报, 2016, 28(10):1713-1722 doi: 10.3969/j.issn.1003-9775.2016.10.013

    Zhu En-Hong, Zhang Hong-Ying, Wu Ya-Dong, Huo Yong-Qing. Method of generating high dynamic range image from a single image. Journal of Computer-Aided Design and Computer Graphics, 2016, 28(10):1713-1722 doi: 10.3969/j.issn.1003-9775.2016.10.013
    [23] Wei Z, Wen C Y, Li Z G. Local inverse tone mapping for scalable high dynamic range image coding. IEEE Transactions on Circuits and Systems for Video Technology, 2016, to be published, doi: 10.1109/TCSVT.2016.2611944
    [24] Schlick C. Quantization techniques for visualization of high dynamic range pictures. Photorealistic Rendering Techniques. Berlin, Heidelberg: Springer, 1995. 7-20
    [25] Aydin T O, Mantiuk R, Myszkowski K, Seidel H P. Dynamic range independent image quality assessment. In: Proceedings of Special Interest Group on Graphics and Interactive Techniques. Los Angeles, California: ACM, 2008.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1489
  • HTML全文浏览量:  506
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 录用日期:  2017-11-06
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回