High Dynamic Range Image Generating Algorithm Based on Detail Layer Separation of a Single Exposure Image
-
摘要: 针对利用单幅低动态范围(Low dynamic range,LDR)图像生成高动态范围(High dynamic range,HDR)图像细节信息不足的问题,本文提出了一种基于细节层分离的单曝光HDR图像生成算法.该算法基于人类视觉系统模型,首先分别提取出LDR图像的亮度分量和色度分量,对伽马校正后的亮度分量进行双边滤波,提取出亮度分量的基本层,再对基本层和亮度分量进行遍历运算,得到亮度分量的细节层;然后,构造反色调映射函数,分别对细节层和伽马校正后的亮度图像进行扩展,得到各自的反色调映图像;之后,将反色调映射后亮度分量与压缩后的细节层进行融合,得到新的亮度分量.最后,融合色度分量与新的亮度分量,并对融合后图像进行去噪,得到最终的HDR图像.实验表明该算法能挖掘出部分隐藏的图像细节信息,处理效果较好,运行效率高,具有较好的鲁棒性.Abstract: Aimed at the problem of insufficient information on high dynamic range (HDR) image generating using a single low dynamic range (LDR) image, an HDR image generating algorithm by means of detail layer separation of a single exposure image is proposed. Firstly, according to the human visual system model, the luminance component and chrominance component of the LDR image are extracted, respectively, then the gamma-corrected luminance component is filtered by bilateral filtering so as to extract the basic layer of the luminance component, and the extracted basic layer and the luminance component are traversed to get the detail layer of the luminance component. Secondly, the inverse tone mapping function is constructed to extend the detail image and the gamma-corrected luminance image to obtain the inverse tone mapping images, respectively. Thirdly, fusing the inverse tone mapping luminance component and the compressed detail layer obtains a new luminance component. Finally, the chromaticity component is combined with the new luminance component to get the fused image, which is de-noised to obtain the final HDR image. A comparison experiment shows that the proposed algorithm can excavate some hidden image detail information and has better processing effects, higher operation efficiency, and better robustness.
-
Key words:
- High dynamic range (HDR) /
- inverse tone mapping operator (iTMO) /
- human visual system (HSV) /
- gamma correction /
- detail layer separation
-
-
表 1 处理前后动态范围对比
Table 1 Comparisons of dynamic range
图像对 动态范围 原图像 2 处理后图像 6 表 2 DRIM对比图中红、绿、蓝各像素点所占百分比(%)
Table 2 Percentage of red pixel, green pixel and blue pixel in DRIM (%)
DRIM 算法 (Ⅰ) (Ⅱ) (Ⅲ) (Ⅳ) (Ⅴ) (Ⅵ) (Ⅶ) 平均值 Akyuz 6.26 26.84 7.45 25.72 9.5 1.27 2.71 11.39 Banterl 3.58 26.02 5.37 27.41 9.68 1.98 1.55 10.79 Red Huo 1.58 20.38 8.42 10.56 4.49 5.38 1.42 7.46 Zhu 2.23 23.01 4.89 15.36 8.13 1.03 1.58 8.03 本文 2.03 22.76 4.34 17.35 8.11 2.74 1.4 8.39 Akyuz 48.13 22.78 19.1 12.84 13.53 5.27 23.34 20.71 Banterl 34.2 15.98 8.02 13.99 13.25 4.32 21.34 15.87 Green Huo 20.27 4.48 19.39 5.93 7.63 5.45 30.63 13.39 Zhu 17.02 5.72 5.3 17.47 16.38 3.21 10.23 10.76 本文 10.83 5.16 4.34 9.74 14.64 3.47 12.82 8.71 Akyuz 24.19 42.21 16.17 10.37 8.37 9.37 3.95 16.37 Banterl 25.61 37.48 24.18 12.46 9.09 10.36 5.25 17.77 Blue Huo 21.84 36.37 20.71 9.96 4.27 10.32 4.84 15.47 Zhu 26.87 37.29 33.19 13.09 10.63 15.43 5.94 20.34 本文 28.32 38.28 32.48 12.88 10.44 19.73 5.66 21.11 表 3 图像处理后动态范围对比
Table 3 Comparisons of dynamic range
图像 Akyuz Banterl Huo Zhu 本文 (Ⅰ) $7.8 \times 10^4$ $3.2 \times 10^5$ $2.4 \times 10^6$ $6.7 \times 10^6$ $2.5 \times 10^6$ (Ⅱ) $3.2 \times 10^4$ $1.2 \times 10^5$ $1.2 \times 10^6$ $4.5 \times 10^6$ $1.1 \times 10^6$ (Ⅲ) $4.3 \times 10^5$ $2.1 \times 10^6$ $9.4 \times 10^6$ $1.6 \times 10^7$ $9.8 \times 10^6$ (Ⅳ) $7.1 \times 10^4$ $2.7 \times 10^5$ $2.1 \times 10^6$ $5.3 \times 10^6$ $2.0 \times 10^6$ (Ⅴ) $3.5 \times 10^4$ $1.5 \times 10^5$ $1.3 \times 10^6$ $4.9 \times 10^6$ $1.2 \times 10^6$ (Ⅵ) $5.0 \times 10^4$ $2.1 \times 10^5$ $1.8 \times 10^6$ $1.9 \times 10^6$ $1.7 \times 10^6$ (Ⅶ) $6.8 \times 10^4$ $2.9 \times 10^5$ $2.1 \times 10^6$ $5.8 \times 10^6$ $1.8 \times 10^6$ -
[1] 陆许明, 朱雄泳, 李智文, 麦建业, 谭洪舟.一种亮度可控与细节保持的高动态范围图像色调映射方法.自动化学报, 2015, 41(6):1080-1092 http://www.aas.net.cn/CN/abstract/abstract18683.shtmlLu Xu-Ming, Zhu Xiong-Yong, Li Zhi-Wen, Mai Jian-Ye, Tan Hong-Zhou. A brightness-scaling and detail-preserving tone mapping method for high dynamic range images. Acta Automatica Sinica, 2015, 41(6):1080-1092 http://www.aas.net.cn/CN/abstract/abstract18683.shtml [2] 杨克虎, 姬靖, 郭建军, 郁文生.高动态范围图像和色阶映射算子.自动化学报, 2009, 35(2):113-122 http://www.aas.net.cn/CN/abstract/abstract17906.shtmlYang Ke-Hu, Ji Jing, Guo Jian-Jun, Yu Wen-Sheng. High dynamic range images and tone mapping operator. Acta Automatica Sinica, 2009, 35(2):113-122 http://www.aas.net.cn/CN/abstract/abstract17906.shtml [3] Sun M Z, Shi M Y. A HDRI display algorithm based on image color appearance model. In: Proceedings of the 15th International Conference on Computer and Information Science. Okayama, Japan: IEEE, 2016. 1-6 [4] Huo Y Q, Yang F. High-dynamic range image generation from single low-dynamic range image. IET Image Processing, 2016, 10(3):198-205 doi: 10.1049/iet-ipr.2014.0782 [5] Huo Y Q, Zhang X D. Single image-based HDR imaging with CRF estimation. In: Proceedings of the 2016 International Conference On Communication Problem-Solving (ICCP). Taipei, China: IEEE, 2016. 1-3 [6] Oh T H, Lee J Y, Tai Y W, Kweon I S. Robust high dynamic range imaging by rank minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6):1219-1232 doi: 10.1109/TPAMI.2014.2361338 [7] Kuo P H, Tang C S, Chien S Y. Content-adaptive inverse tone mapping. In: Proceedings of the 2012 IEEE Visual Communications and Image Processing. San Diego, CA, USA: IEEE, 2012. 1-6 [8] Le Pendu M, Guillemot C, Thoreau D. Local inverse tone curve learning for high dynamic range image scalable compression. IEEE Transactions on Image Processing, 2015, 24(12):5753-5763 doi: 10.1109/TIP.2015.2483899 [9] 霍永青, 彭启琮.高动态范围图像及反色调映射算子.系统工程与电子技术, 2012, 34(4):821-826 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201204032Huo Yong-Qing, Peng Qi-Cong. High dynamic range images and reverse tone mapping operators. Systems Engineering and Electronics, 2012, 34(4):821-826 http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201204032 [10] Daly S J, Feng X F. Bit-depth extension using spatiotemporal microdither based on models of the equivalent input noise of the visual system. In: Proceedings of SPIE Volume 5008, Color Imaging Ⅷ: Processing, Hardcopy, and Applications. Santa Clara, CA, United States: SPIE, 2003. 455-466 [11] Daly S J, Feng X F. Decontouring: prevention and removal of false contour artifacts. In: Proceedings of the SPIE Volume 5292, Human Vision and Electronic Imaging IX. San Jose, California, United States: SPIE, 2004. 130-149 [12] Banterle F, Debattista K, Artusi A, Pattanaik S, Myszkowski K, Ledda P, Chalmers A. High dynamic range imaging and low dynamic range expansion for generating HDR content. Computer Graphics Forum, 2009, 28(8):2343-2367 doi: 10.1111/j.1467-8659.2009.01541.x [13] Akyüz A O, Fleming R, Riecke B E, Reinhard E, Bülthoff H H. Do HDR displays support LDR content?: a psychophysical evaluation. ACM Transactions on Graphics, 2007, 26(3): Article No. 38 [14] Hsia S C, Kuo T T. High-performance high dynamic range image generation by inverted local patterns. IET Image Processing, 2015, 9(12):1083-1091 doi: 10.1049/iet-ipr.2014.0853 [15] Didyk P, Mantiuk R, Hein M, Seidel H P. Enhancement of bright video features for HDR displays. Computer Graphics Forum, 2008, 27(4):1265-1274 doi: 10.1111/j.1467-8659.2008.01265.x [16] Martin M, Fleming R, Sorkine O, Gutierrez D. Understanding exposure for reverse tone mapping. In: Proceedings of the Congreso Español de Informática Gráfica. Aire-la-Ville, Switzerland: Eurographics Association, 2008. 189-198 [17] Banterle F, Ledda P, Debattista K, Chalmers A, Bloj M. A framework for inverse tone mapping. The Visual Computer, 2007, 23(7):467-478 doi: 10.1007/s00371-007-0124-9 [18] Banterle F, Ledda P, Debattista K, Chalmers A. Expanding low dynamic range videos for high dynamic range applications. In: Proceedings of the 24th Spring Conference on Computer Graphics. Budmerice, Slovakia: ACM, 2010. 33-41 [19] Wang L D, Wei L Y, Zhou K, Guo B N, Shum H Y. High dynamic range image hallucination. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games. San Diego, California: ACM, 2007. Article No. 72 [20] Celebi A T, Duvar R, Urhan O. Fuzzy fusion based high dynamic range imaging using adaptive histogram separation. IEEE Transactions on Consumer Electronics, 2015, 61(1):119-127 doi: 10.1109/TCE.2015.7064119 [21] Huo Y Q, Yang F, Dong L, Brost V. Physiological inverse tone mapping based on retina response. The Visual Computer, 2014, 30(5):507-517 doi: 10.1007/s00371-013-0875-4 [22] 朱恩弘, 张红英, 吴亚东, 霍永青.单幅图像的高动态范围图像生成方法.计算机辅助设计与图形学学报, 2016, 28(10):1713-1722 doi: 10.3969/j.issn.1003-9775.2016.10.013Zhu En-Hong, Zhang Hong-Ying, Wu Ya-Dong, Huo Yong-Qing. Method of generating high dynamic range image from a single image. Journal of Computer-Aided Design and Computer Graphics, 2016, 28(10):1713-1722 doi: 10.3969/j.issn.1003-9775.2016.10.013 [23] Wei Z, Wen C Y, Li Z G. Local inverse tone mapping for scalable high dynamic range image coding. IEEE Transactions on Circuits and Systems for Video Technology, 2016, to be published, doi: 10.1109/TCSVT.2016.2611944 [24] Schlick C. Quantization techniques for visualization of high dynamic range pictures. Photorealistic Rendering Techniques. Berlin, Heidelberg: Springer, 1995. 7-20 [25] Aydin T O, Mantiuk R, Myszkowski K, Seidel H P. Dynamic range independent image quality assessment. In: Proceedings of Special Interest Group on Graphics and Interactive Techniques. Los Angeles, California: ACM, 2008. 期刊类型引用(22)
1. 张欣,张雁,张鑫. 基于亮度与彩色纹理统计的无参考图像评价. 信息技术与信息化. 2023(01): 122-129 . 百度学术
2. 何锦成,韩永成,张闻文,何伟基,陈钱. 基于通道校正卷积的真彩色微光图像增强. 兵工学报. 2023(06): 1643-1654 . 百度学术
3. 罗小燕,刘顺,汤文聪,王兴卫. 基于Mask RCNN的矿仓入料口堵塞矿石识别定位研究. 有色金属科学与工程. 2022(01): 101-107 . 百度学术
4. 陈健,李诗云,林丽,王猛,李佐勇. 模糊失真图像无参考质量评价综述. 自动化学报. 2022(03): 689-711 . 本站查看
5. 段添耀,柯圆圆. 基于多种颜色模型的马赛克瓷砖选色研究. 江汉大学学报(自然科学版). 2022(04): 45-52 . 百度学术
6. 来晓. 基于微调优化的深度学习在果蔬识别中的应用. 智能计算机与应用. 2021(04): 117-123 . 百度学术
7. 贺杰,王桂梅,刘杰辉,杨立洁. 基于图像处理的皮带机上煤量体积计量. 计量学报. 2020(12): 1516-1520 . 百度学术
8. 柴富杰,邓嘉敏,李建森,刘正发. 数码照相颜色数值与物质浓度辨识的数学模型. 数学的实践与认识. 2019(04): 305-311 . 百度学术
9. 陈扬,李旦,张建秋. 互补色小波域图像质量盲评价方法. 电子学报. 2019(04): 775-783 . 百度学术
10. 侯向宁,刘华春. 基于MSER和SVM以及强种子区域生长的车牌定位. 西安工程大学学报. 2019(02): 180-185 . 百度学术
11. 梁长江,吴雪梅,王芳,宋朱军,张富贵. 基于无人机的田间地膜识别算法研究. 浙江农业学报. 2019(06): 1005-1011 . 百度学术
12. 刘星星,王烁烁,徐丽明,袁全春,马帅,于畅畅,牛丛,陈晨,袁训腾,曾鉴. 基于OpenCV的动态葡萄干色泽实时识别. 农业工程学报. 2019(23): 177-184 . 百度学术
13. 李可,陈洪亮,张生伟,万锦锦. 基于SVM的雾天图像分类技术研究. 电光与控制. 2018(03): 37-41+47 . 百度学术
14. 丁丽. 基于粗集理论的车辆状态检测. 电脑知识与技术. 2018(01): 189-190+208 . 百度学术
15. 胡晓丽,钟昊,李彤. 基于二值图像连通域的甘蔗螟虫识别计数方法. 桂林电子科技大学学报. 2018(03): 210-214 . 百度学术
16. 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法. 山东大学学报(工学版). 2018(04): 10-19 . 百度学术
17. 李玉华,李天华,牛子孺,吴彦强,张智龙,侯加林. 基于色饱和度三维几何特征的马铃薯芽眼识别. 农业工程学报. 2018(24): 158-164 . 百度学术
18. 郑恩,林靖宇. 基于图像质量约束的无序图像关键帧提取. 计算机工程. 2017(11): 210-215 . 百度学术
19. 任荣梓,高航. 基于混沌置乱的分量融合图像加密压缩方法. 计算机技术与发展. 2017(08): 106-109+114 . 百度学术
20. 元朴康,况盛坤,王强,田全慧. 基于GRNN的模糊图像盲评价. 包装工程. 2016(13): 195-200 . 百度学术
21. 李俊峰,张之祥,沈军民. 基于亮度统计的无参考图像质量评价. 光电子·激光. 2016(10): 1101-1110 . 百度学术
22. 万泽慧. 试析网络图像的色彩管理要点. 无线互联科技. 2016(04): 32-34 . 百度学术
其他类型引用(51)
-