2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磨浆过程输出纤维长度随机分布预测PDF控制

李明杰 周平

李明杰, 周平. 磨浆过程输出纤维长度随机分布预测PDF控制. 自动化学报, 2019, 45(10): 1923-1932. doi: 10.16383/j.aas.2018.c170225
引用本文: 李明杰, 周平. 磨浆过程输出纤维长度随机分布预测PDF控制. 自动化学报, 2019, 45(10): 1923-1932. doi: 10.16383/j.aas.2018.c170225
LI Ming-Jie, ZHOU Ping. Predictive PDF Control of Output Fiber Length Stochastic Distribution in Refining Process. ACTA AUTOMATICA SINICA, 2019, 45(10): 1923-1932. doi: 10.16383/j.aas.2018.c170225
Citation: LI Ming-Jie, ZHOU Ping. Predictive PDF Control of Output Fiber Length Stochastic Distribution in Refining Process. ACTA AUTOMATICA SINICA, 2019, 45(10): 1923-1932. doi: 10.16383/j.aas.2018.c170225

磨浆过程输出纤维长度随机分布预测PDF控制

doi: 10.16383/j.aas.2018.c170225
基金项目: 

国家自然科学基金 61890934

国家自然科学基金 61333007

国家自然科学基金 61473064

中央高校基本科研业务费项目 N160805001

中央高校基本科研业务费项目 N180802003

国家自然科学基金 61790572

详细信息
    作者简介:

    李明杰  东北大学流程工业综合自动化国家重点实验室博士研究生.主要研究方向为复杂工业过程建模与控制, 随机分布控制.E-mail:limingj88@126.com

    通讯作者:

    周平  东北大学教授, 博士生导师.分别于2003年、2006年、2013年获得东北大学学士学位, 硕士学位和博士学位.主要研究方向为工业过程运行反馈控制, 数据驱动建模与控制.本文通信作者.E-mail:zhouping@mail.neu.edu.cn

Predictive PDF Control of Output Fiber Length Stochastic Distribution in Refining Process

Funds: 

National Natural Science Foundation of China 61890934

National Natural Science Foundation of China 61333007

National Natural Science Foundation of China 61473064

the Fundamental Research Funds for the Central Universities N160805001

the Fundamental Research Funds for the Central Universities N180802003

National Natural Science Foundation of China 61790572

More Information
    Author Bio:

      Ph. D. candidate at the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University. His research interest covers modeling and control of complex industrial process, and stochastic distribution control

    Corresponding author: ZHOU Ping  Professor and Ph.D. supervisor at Northeastern University. He received his bachelor degree, master degree and Ph. D. degree from Northeastern University in 2003, 2006, and 2013, respectively. His research interest covers operation feedback control of industrial process, data-driven modeling and control. Corresponding author of this paper
  • 摘要: 磨浆过程作为制浆和造纸工业最为重要的生产环节之一,其输出纤维长度随机分布(Fiber length stochastic distribution,FLSD)形状直接决定着后续造纸过程的能耗和纸品质量.针对传统的均值和方差难以描述输出FLSD特征,即具有非高斯分布特性,本文提出一种磨浆过程输出FLSD的预测概率密度函数(Probability density function,PDF)控制方法.首先,采用径向基函数(Radical basis function,RBF)神经网络逼近输出FLSD的PDF,在采用迭代学习方法完成基函数参数整定基础上对相应权值向量进行估计.其次,针对权值之间存在强耦合特点,利用随机权神经网络(Random vector functional-networks,RVFLNs)建立表征输入变量和权值之间关系的预测模型.最后,基于建立的输出FLSD模型设计预测PDF控制器,最终实现对期望输出PDF的跟踪控制.基于工业数据实验验证了所提方法的有效性,为磨浆过程优化运行和控制提供理论依据.
    1)  本文责任编委 吴立刚
  • 图  1  典型磨浆过程工艺流程图

    Fig.  1  Flowsheet of typical refining process

    图  2  输出纤维长度随机分布预测PDF控制策略图

    Fig.  2  Strategy diagram of the predictive PDF control for the output FLSD

    图  3  位置变化趋势

    Fig.  3  Variation tendency of position

    图  4  性能指标变化趋势

    Fig.  4  Variation tendency of the performance index

    图  5  中心值变化趋势

    Fig.  5  Variation tendency of the center value

    图  6  宽度变化趋势

    Fig.  6  Variation tendency of width

    图  7  输出PDF近似效果

    Fig.  7  Approximation effect of the output PDF

    图  8  预测PDF控制器下权值响应

    Fig.  8  Weight response with the predictive PDF controller

    图  9  预测PDF控制器下控制输入

    Fig.  9  Control input with the predictive PDF controller

    图  10  预测PDF控制器下输出PDF3D响应

    Fig.  10  3D responses of the output PDF with the predictive PDF

    图  11  初始PDF、最终PDF和期望PDF

    Fig.  11  nitial PDF, final PDF, and desired PDF

  • [1] Smook G A. Handbook for Pulp and Paper Technologists. Vancouver:Angus Wilde Publications, 1992.
    [2] Sikter D, Karlström A, Sandberg C, Engstrand P. Economic perspectives on quality control in TMP refining processes. Nordic Pulp & Paper Research Journal, 2008, 23(3):305-314 http://cn.bing.com/academic/profile?id=56c4903ed68eeb5396ace5ee2e8162ef&encoded=0&v=paper_preview&mkt=zh-cn
    [3] Lama I, Perrier M, Stuart P. Controllability analysis of a TMP-newsprint refining process. Pulp & Paper Canada, 2006, 107(10):44-48 http://cn.bing.com/academic/profile?id=4bd9d47cd5d2cadb4d3ae04bfd1de79b&encoded=0&v=paper_preview&mkt=zh-cn
    [4] Karlström A, Hill J. Refiner optimization and control Part Ⅰ:fiber residence time and major dynamic fluctuations in TMP refining processes. Nordic Pulp & Paper Research Journal, 2014, 29(4):635-652
    [5] Harinath E, Biegler L T, Dumont G A. Control and optimization strategies for thermo-mechanical pulping processes:nonlinear model predictive control. Journal of Process Control, 2011, 21(4):519-528 doi: 10.1016/j.jprocont.2011.01.009
    [6] Harinath E, Biegler L T, Dumont G A. Predictive optimal control for thermo-mechanical pulping processes with multi-stage low consistency refining. Journal of Process Control, 2013, 23(7):1001-1011 doi: 10.1016/j.jprocont.2013.05.005
    [7] Gharehkhani S, Sadeghinezhad E, Kazi S N, Yarmanda H, Badarudina A, Safaei M R, Zubira M N M. Basic effects of pulp refining on fiber properties-a review. Carbohydrate Polymers, 2015, 115:785-803 doi: 10.1016/j.carbpol.2014.08.047
    [8] Lacerda T M, Zambon M D, Frollini E. Effect of acid concentration and pulp properties on hydrolysis reactions of mercerized sisal. Carbohydrate Polymers, 2013, 93(1):347-356 doi: 10.1016/j.carbpol.2012.10.039
    [9] Savastano Jr H, Warden P G, Coutts R S P. Mechanically pulped sisal as reinforcement in cementitious matrices. Cement and Concrete Composites, 2003, 25(3):311-319 doi: 10.1016/S0958-9465(02)00055-0
    [10] Wang H. Bounded Dynamic Stochastic Distributions:Modelling and Control. London:Springer-Verlag, 2000.
    [11] 王宏, 岳红.随机系统输出分布的建模、控制与应用.控制工程, 2003, 10(3):193-197 doi: 10.3969/j.issn.1671-7848.2003.03.001

    Wang Hong, Yue Hong. Output PDF control of stochastic distribution systems:modelling, control and applications. Control Engineering of China, 2003, 10(3):193-197 doi: 10.3969/j.issn.1671-7848.2003.03.001
    [12] Wang H. Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability. IEEE Transactions on Automatic Control, 1999, 41(11):2103-2107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52cd550278df6c8daa22810b321b98de
    [13] Wang H, Zhang J H. Bounded stochastic distributions control for pseudo-ARMAX stochastic systems. IEEE Transactions on Automatic Control, 2001, 46(3):486-490 doi: 10.1109/9.911429
    [14] Wang H. Minimum entropy control of non-Gaussian dynamic stochastic systems. IEEE Transactions on Automatic Control, 2002, 47(2):398-403 doi: 10.1109/9.983388
    [15] Wang H, Afshar P. ILC-based fixed-structure controller design for output PDF shaping in stochastic systems using LMI techniques. IEEE Transactions on Automatic Control, 2009, 54(4):760-773 doi: 10.1109/TAC.2009.2014934
    [16] Guo L, Wang H. PID controller design for output PDFs of stochastic systems using linear matrix inequalities. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 35(1):65-71 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=388caf48dc43547ca83bb8c05cc5e252
    [17] Yue H, Zhou J L, Wang H. Minimum entropy of B-spline PDF systems with mean constraint. Automatica, 2006, 42(6):989-994 doi: 10.1016/j.automatica.2006.02.004
    [18] Zhou J L, Yue H, Zhang J F, Wang H. Iterative learning double closed-loop structure for modeling and controller design of output stochastic distribution control systems. IEEE Transactions on Control Systems Technology, 2014, 22(6):2261-2276 doi: 10.1109/TCST.2014.2306452
    [19] Wang A P, Afshar P, Wang H. Complex stochastic systems modelling and control via iterative machine learning. Neurocomputing, 2008, 71(13-15):2685-2692 doi: 10.1016/j.neucom.2007.06.018
    [20] Zhang J F, Yue H, Zhou J L. Predictive PDF control in shaping of molecular weight distribution based on a new modeling algorithm. Journal of Process Control, 2015, 30:80-89 doi: 10.1016/j.jprocont.2014.12.009
    [21] Zhu J Y, Gui W H, Yang C H, Xu H L, Wang X L. Probability density function of bubble size based reagent dosage predictive control for copper roughing flotation. Control Engineering Practice, 2014, 29:1-12 doi: 10.1016/j.conengprac.2014.02.021
    [22] Igelnik B, Pao Y H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Transactions on Neural Networks, 1995, 6(6):1320-1329 doi: 10.1109/72.471375
    [23] Stosic D, Stosic D, Zanchettin C, Ludermir T, Stosic B. QRNN:q generalized random neural network. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2):383-390 doi: 10.1109/TNNLS.2015.2513365
    [24] Zhou P, Lv Y B, Wang H, Chai T Y. Data-driven robust RVFLNs modeling of a blast furnace iron-making process using Cauchy distribution weighted M-estimation. IEEE Transactions on Industrial Electronics, 2017, 64(9):7141-7151 doi: 10.1109/TIE.2017.2686369
    [25] Lu X J, Zou W, Huang M H. A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process. IEEE Transactions on Industrial Informatics, 2016, 12(3):1156-1165 doi: 10.1109/TII.2016.2557805
    [26] Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1):162-175 doi: 10.1109/TCST.2012.2182996
    [27] Zhou P, Lu S W, Chai T Y. Data-driven soft-sensor modeling for product quality estimation using case-based reasoning and fuzzy-similarity rough sets. IEEE Transactions on Automation Science and Engineering, 2014, 11(4):992-1003 doi: 10.1109/TASE.2013.2288279
  • 加载中
图(11)
计量
  • 文章访问数:  1183
  • HTML全文浏览量:  216
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 录用日期:  2017-09-15
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回