2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维时态关联规则的演化模糊推理预测算法

王玲 孟建瑶 李俊飞 彭开香

王玲, 孟建瑶, 李俊飞, 彭开香. 基于多维时态关联规则的演化模糊推理预测算法. 自动化学报, 2018, 44(8): 1446-1459. doi: 10.16383/j.aas.2018.c170222
引用本文: 王玲, 孟建瑶, 李俊飞, 彭开香. 基于多维时态关联规则的演化模糊推理预测算法. 自动化学报, 2018, 44(8): 1446-1459. doi: 10.16383/j.aas.2018.c170222
WANG Ling, MENG Jian-Yao, LI Jun-Fei, PENG Kai-Xiang. An Evolving Fuzzy Inference Algorithm With Multi-dimensional Temporal Association Rules. ACTA AUTOMATICA SINICA, 2018, 44(8): 1446-1459. doi: 10.16383/j.aas.2018.c170222
Citation: WANG Ling, MENG Jian-Yao, LI Jun-Fei, PENG Kai-Xiang. An Evolving Fuzzy Inference Algorithm With Multi-dimensional Temporal Association Rules. ACTA AUTOMATICA SINICA, 2018, 44(8): 1446-1459. doi: 10.16383/j.aas.2018.c170222

基于多维时态关联规则的演化模糊推理预测算法

doi: 10.16383/j.aas.2018.c170222
基金项目: 

国家自然基科学金 61572073

详细信息
    作者简介:

    孟建瑶  北京科技大学自动化学院硕士研究生.主要研究方向为数据挖掘和机器学习.E-mail:18810481455@163.com

    李俊飞  北京科技大学自动化学院硕士研究生.主要研究方向为数据挖掘和机器学习.E-mail:hpuljfei@163.com

    彭开香  北京科技大学自动化学院教授.主要研究方向为复杂工业系统的故障诊断与一体化控制.E-mail:kaixiang@ustb.edu.cn

    通讯作者:

    王玲  北京科技大学自动化学院副教授.主要研究方向为数据挖掘, 机器学习与复杂系统建模.本文通信作者.E-mail:lingwang@ustb.edu.cn

An Evolving Fuzzy Inference Algorithm With Multi-dimensional Temporal Association Rules

Funds: 

National Natural Science Foundation of China 61572073

More Information
    Author Bio:

     Master student at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. Her research interest covers data mining and machine learning

     Master student at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. His research interest covers data mining and machine learning

     Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. His research interest covers fault diagnosis and integrated control for complex industrial system

    Corresponding author: WANG Ling  Associate professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. Her research interest covers data mining, machine learning, and complex system modeling. Corresponding author of this paper
  • 摘要: 挖掘时态关联规则的目的是为了发现带有时态信息的项集之间有趣的关系.由于数据库经常动态更新,时态关联规则的挖掘也应该适应数据库的更新.然而,现有的大多数算法不仅需要重新挖掘更新的数据库,浪费了大量的时间和效率,而且不能利用已存在的规则定量地预测某些项的变化趋势.本文提出了一个基于多维时态关联规则的演化模糊推理预测建模算法(Evolving fuzzy inference model based on multidimensional temporal association rules,EFI-MTAR),主要优势是构建了一种基于多维时态关联规则的模糊推理建模算法(Fuzzy inference modeling algorithm based on multidimensional temporal association rules,FI-MTAR),实现了对时间序列的定量预测.此外,为了降低规则更新的代价和加快规则预测的速度,提出了概念漂移检测策略来处理时间序列数据以适应数据库的动态更新.实验结果表明了本文提出算法的有效性和准确性.
    1)  本文责任编委 张敏灵
  • 图  1  滑动窗的实现过程

    Fig.  1  The implementation process of sliding window

    图  2  系统演化更新

    Fig.  2  The update process of system evolving system evolving window

    图  3  数据集Air Quality的拟合曲线

    Fig.  3  The fitting curve of the data set Air Quality

    图  4  数据集Istanbul的拟合曲线

    Fig.  4  The fitting curve of the data set Istanbul

    图  5  数据集Synthetic Control Chart的拟合曲线

    Fig.  5  The fitting curve of the data set Synthetic Control Chart

    表  1  对比方案

    Table  1  The comparison program

    对比方案方案简述
    方案1利用FP-growth[30]算法进行时态关联规则挖掘, 然后利用FI-MTAR算法进行推理预测
    方案2利用时态关联规则算法[18]和EFI-MTAR算法演化模糊推理
    方案3直接利用TS模糊推理[31]进行推理预测
    下载: 导出CSV

    表  2  离散化项集的序列片段模式

    Table  2  The segment patterns of the time series for the discrete item

    时间序列变量离散斜率斜率对幅值变归一化变化
    化项均值应角度化均值幅值均值
    PT08.S2(NMHC)2174.2589.25144.20.48
    NOx(GT)31-31.6-87.1-92.4-0.16
    PT08.S5(O3)6180.889.3911.10.45
    下载: 导出CSV

    表  3  序列片段模式的语义描述

    Table  3  The semantic description of the segment patterns

    斜率对应角度范围语义描述归一化变化幅值范围语义描述
    $[-90, -60]$剧烈下降 $[-1, -0.6]$大幅下降
    $[-60, -30]$快速下降 $[-0.6, -0.3]$中幅下降
    $[-30, 0 ]$平稳下降 $[-0.3, 0]$小幅下降
    $[0, 30]$平稳上升 $[0, 0.3]$小幅上升
    $[30, 60]$快速上升 $[0.3, 0.6]$中幅上升
    $[60, 90]$剧烈上升 $[0.6, 1]$大幅上升
    下载: 导出CSV

    表  4  最终预测输出上下界均方根误差

    Table  4  The RMSE of upper bound and lower bound for the prediction output

    $dx_{c3{j_3}}^L$ $dx_{c3{j_3}}^U$
    0.16560.1803
    下载: 导出CSV

    表  5  不同滑动窗口的演化更新效果

    Table  5  The evolution effect of different sliding window size

    评价指标演化次数滑动窗口大小本文方法
    5 % 10 % 15 % 20 % 7 %
    Rules01617191917
    12019222418
    22021242620
    32121252921
    42427293321
    52524303424
    62529313323
    CA00.9090.8990.8760.8660.911
    10.8790.9040.8510.8510.906
    20.8860.9090.8460.8390.916
    30.8910.8960.8490.8320.919
    40.8760.8870.8510.8420.924
    50.8690.8790.8540.8470.896
    60.8810.8960.8620.8590.909
    RMSE00.1440.1520.1870.1970.137
    10.1790.1450.2210.2240.145
    20.1680.1390.2340.2640.121
    30.1590.1570.2270.2790.112
    40.1870.1650.2240.2410.104
    50.1940.1830.2090.2360.154
    60.1750.1560.2010.2140.146
    下载: 导出CSV

    表  6  不同数据集的有效性和准确性对比

    Table  6  Comparison of the validity and accuracy of different data sets

    数据集演化方案1方案2
    次数RulesCARulesCA
    Air Quality0350.902170.911
    1490.897180.906
    2540.879200.916
    3620.887210.919
    4660.874210.924
    5710.867240.896
    6780.874230.909
    7870.894200.921
    8940.886230.914
    9990.879250.900
    101010.875270.894
    111090.874240.898
    121120.895240.927
    131190.9004260.932
    Istanbul0320.806190.855
    1360.814170.881
    2390.743210.805
    3510.807210.801
    4570.764210.805
    5670.794250.801
    6740.7778230.889
    0650.904440.946
    1780.882490.891
    2860.856490.888
    Synthetic3990.862560.875
    Control41080.843480.851
    Chart51100.856530.956
    61140.854590.896
    71240.889480.926
    下载: 导出CSV

    表  7  拟合误差

    Table  7  Fitting error

    数据集演化次数方案1方案2方案3
    00.1890.1370.168
    10.1950.1450.172
    20.1760.1210.156
    30.1690.1120.144
    40.1620.1040.136
    Air50.2010.1540.159
    Quality60.1940.1460.174
    70.1560.1080.144
    80.1860.1330.176
    90.1970.1480.185
    100.2110.1580.195
    110.1970.1550.186
    120.1540.0990.129
    130.1460.0910.132
    Istanbul00.1440.0940.129
    10.1840.1390.165
    20.2260.1720.208
    30.1980.1490.184
    40.1880.1390.171
    50.2090.1680.196
    60.1480.1030.139
    00.1320.0720.095
    10.1540.0940.124
    20.1690.1130.146
    Synthetic30.1870.1320.167
    Control40.2060.1490.182
    Chart50.1290.0760.109
    60.1380.0920.116
    70.1550.0870.126
    下载: 导出CSV
  • [1] Yolcu U, Aladag C H, Egrioglu E, Uslu V R. Time-series forecasting with a novel fuzzy time-series approach:an example for Istanbul stock market. Journal of Statistical Computation and Simulation, 2013, 83(4):599-612 doi: 10.1080/00949655.2011.630000
    [2] Cheng C H, Yang J H. Rough-set rule induction to build fuzzy time series model in forecasting stock price. In: Proceedings of the 12th Conference on International Fuzzy Systems and Knowledge Discovery (FSKD). Zhangjiajie, China: IEEE, 2015. 278-284
    [3] Aslanargun A, Mammadov M, Yazici B, Yolacan S. Comparison of ARIMA, neural networks and hybrid models in time series:tourist arrival forecasting. Journal of Statistical Computation and Simulation, 2007, 77(1):29-53 doi: 10.1080/10629360600564874
    [4] Cheng C H, Shiu H Y. A novel GA-SVR time series model based on selected indicators method for forecasting stock price. In: Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). Sapporo, Japan: IEEE, 2014. 395-399 http://ieeexplore.ieee.org/document/6948139/
    [5] 赵昊, 汪涛, 许凡, 方彦军.时序动态关联规则挖掘中趋势变化与预测.河南科技大学学报:自然科学版, 2015, 36(6):40-45 http://d.old.wanfangdata.com.cn/Periodical/lygxyxb201506009

    Zhao Hao, Wang Tao, Xu Fan, Fang Yan-Jun. Change tendency and forecast on time series in dynamic association rules mining. Journal of Henan University of Science and Technology:Natural Science, 2015, 36(6):40-45 http://d.old.wanfangdata.com.cn/Periodical/lygxyxb201506009
    [6] Zeng Y, Yin S Q, Liu J Y, Zhang M. Research of improved FP-Growth algorithm in association rules mining. Scientific Programming, 2015, 2015: Article No. 910281 http://dl.acm.org/citation.cfm?id=2814689
    [7] Xiao Y Y, Tian Y, Zhao Q H. Optimizing frequent time-window selection for association rules mining in a temporal database using a variable neighbourhood search. Computers and Operations Research, 2014, 52:241-250 doi: 10.1016/j.cor.2013.09.018
    [8] Adhikari J, Rao P R. Identifying calendar-based periodic patterns. Emerging Paradigms in Machine Learning. Berlin, Heidelberg: Springer, 2013. 329-357
    [9] Ben Ahmed E, Nabli A, Gargouri F. On line mining of cyclic association rules from parallel dimension hierarchies. Real World Data Mining Applications. Cham: Springer International Publishing, 2015. 31-50
    [10] Matthews S G, Gongora M A, Hopgood A A, Ahmadi S. Web usage mining with evolutionary extraction of temporal fuzzy association rules. Knowledge-Based Systems, 2013, 54:66-72 doi: 10.1016/j.knosys.2013.09.003
    [11] Yang H D, Yang C C. Using health-consumer-contributed data to detect adverse drug reactions by association mining with temporal analysis. ACM Transactions on Intelligent Systems and Technology, 2015, 6(4):Article No. 55 http://cn.bing.com/academic/profile?id=9ccd1892b9c3ad2a731759c442bdcbeb&encoded=0&v=paper_preview&mkt=zh-cn
    [12] Nath B, Bhattacharyya D K, Ghosh A. Incremental association rule mining:a survey. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2013, 3(3):157-169 doi: 10.1002/widm.1086
    [13] Zhuang D E H, Li G C L, Wong A K C. Discovery of temporal associations in multivariate time series. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12):2969-2982 doi: 10.1109/TKDE.2014.2310219
    [14] Hong T P, Lan G C, Su J H, Wu P S, Wang S L. Discovery of temporal association rules with hierarchical granular framework. Applied Computing and Informatics, 2016, 12(2):134-141 doi: 10.1016/j.aci.2016.01.003
    [15] Sirisha G N V G, Shashi M. A new multivariate time series transformation technique using closed interesting subspaces. In: Proceedings of the 2015 International Mining Intelligence and Knowledge Exploration. Cham: Springer, 2015. 392-405 doi: 10.1007/978-3-319-26832-3_37
    [16] Mohd K N, Mustapha A, Ahmad M H. Effect of temporal relationships in associative rule mining for web log data. The Scientific World Journal, 2014, 2014:Article No. 813983 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003740544
    [17] 王玲, 孟建瑶, 徐培培, 彭开香.基于多维时间序列形态特征的相似性动态聚类算法.工程科学学报, 2017, 39(7):1114-1122 http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201707019

    Wang Ling, Meng Jian-Yao, Xu Pei-Pei, Peng Kai-Xiang. Similarity dynamical clustering algorithm based on multidimensional shape features for time series. Chinese Journal of Engineering, 2017, 39(7):1114-1122 http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201707019
    [18] Pankaj G, Sagar B B. Discovering weighted calendar-based temporal relationship rules using frequent pattern tree. Indian Journal of Science and Technology, 2016, 9(28). DOI: 10.17485/ijst/2016/v9i28/98455
    [19] 徐正光. 智能自动化的模式识别方法及其工程实现[博士学位论文], 北京科技大学自动化学院, 中国, 2001.

    Xu Zheng-Guang. Pattern recognition method of intelligent automation and its implementation in engineering[Ph. D. dissertation], College of Automation, University of Science and Technology, China, 2001.
    [20] Sun C P, Gao Q, Yu H, Xu Z G. Study on moving pattern based faultdetection method. Applied Mechanics and Materials, 2013, 427-429:1463-1466 doi: 10.4028/www.scientific.net/AMM.427-429
    [21] Xu Z G, Sun C P. Moving pattern-based forecasting model of a class of complex dynamical systems. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL, USA: IEEE, 2011. 4967-4972 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6161015
    [22] Xu Z G, Sun C P. Moving pattern-based approach to modeling of a class of complex production processes. In: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems. Taipei, China: IEEE, 2011. 2282-2287 http://ieeexplore.ieee.org/document/6007651/
    [23] 徐正光, 孙昌平, 吴金霞.基于区间数度量的运动模式建模与控制.控制理论与应用, 2012, 29(9):1115-1124 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201209003

    Xu Zheng-Guang, Sun Chang-Ping, Wu Jin-Xia. Moving pattern measured by interval number for modeling and control. Control Theory and Application, 2012, 29(9):1115-1124 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201209003
    [24] 徐正光, 孙昌平.基于区间T-S模糊模型的运动模式预测.控制与决策, 2012, 27(11):1699-1705 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201211017

    Xu Zheng-Guang, Sun Chang-Ping. Moving pattern forecasting using interval T-S fuzzy model. Control and Decision, 2012, 27(11):1699-1705 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201211017
    [25] 丁园, 王斌, 鄢进冲, 潘昪.基于二维区间自回归模型的烧结终点预测.烧结球团, 2017, 42(3):1-6, 15 http://d.old.wanfangdata.com.cn/Periodical/sjqt201703001

    Ding Yuan, Wang Bin, Yan Jin-Chong, Pan Sheng. Prediction of burning through point based on two-dimensional interval autoregressive model. Sintering and Pelletizing, 2017, 42(3):1-6, 15 http://d.old.wanfangdata.com.cn/Periodical/sjqt201703001
    [26] 孙昌平, 徐正光.基于多维区间T-S模糊模型的多维运动模式预测.控制与决策, 2016, 31(9):1569-1576 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201609005

    Sun Chang-Ping, Xu Zheng-Guang. Multi-dimensional moving pattern prediction based on multi-dimensional interval T-S fuzzy model. Control and Decision, 2016, 31(9):1569-1576 http://d.old.wanfangdata.com.cn/Periodical/kzyjc201609005
    [27] Dries A, Rückert U. Adaptive concept drift detection. Statistical Analysis and Data Mining, 2009, 2(5-6):311-327 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201707005
    [28] Buntine W. Learning classification trees. Statistics and Computing, 1992, 2(2):63-73 doi: 10.1007/BF01889584
    [29] Aha D. UCI Machine learning repository: Center for machine learning and intelligent systems[Online], available: http://archive.ics.uci.edu/ml, August 25, 2017
    [30] Wang H B, Liu Y C, Wang C D. Research on association rule algorithm based on distributed and weighted FP-growth. Advances in Multimedia, Software Engineering and Computing. Berlin, Heidelberg: Springer, 2011, 1: 133-138 doi: 10.1007/978-3-642-25989-0_24
    [31] Wang J S, Zhang Y, Sun S F. Multiple T-S fuzzy neural networks soft sensing modeling of flotation process based on fuzzy C-means clustering algorithm. Advances in Neural Network Research and Applications. Berlin, Heidelberg: Springer, 2010. 137-144
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  2148
  • HTML全文浏览量:  283
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-28
  • 录用日期:  2017-11-22
  • 刊出日期:  2018-08-20

目录

    /

    返回文章
    返回