[1]
|
Fidler S, Dickinson S, Urtasun R. 3D object detection and viewpoint estimation with a deformable 3D cuboid model. In: Proceedings of the 2012 International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 611-619 http://dl.acm.org/citation.cfm?id=2999134.2999203
|
[2]
|
Simo-Serra E, Quattoni A, Torras C, Moreno-Noguer F. A joint model for 2D and 3D pose estimation from a single image. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 3634-3641 http://dl.acm.org/citation.cfm?id=2516195
|
[3]
|
Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59 doi: 10.1006/cviu.1995.1004
|
[4]
|
Hejrati M, Ramanan D. Analyzing 3D objects in cluttered images. In: Proceeding of the 2012 International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 593-601 http://dl.acm.org/citation.cfm?id=2999134.2999201
|
[5]
|
Zia M Z, Stark M, Schiele B, Schindler K. Detailed 3d representations for object recognition and modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2608-2623 doi: 10.1109/TPAMI.2013.87
|
[6]
|
方红, 杨海蓉.贪婪算法与压缩感知理论.自动化学报, 2011, 37(12): 1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtmlFang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12): 1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtml
|
[7]
|
周瑜, 刘俊涛, 白翔.形状匹配方法研究与展望.自动化学报, 2012, 38(6): 889-910 http://www.aas.net.cn/CN/abstract/abstract13357.shtmlZhou Yu, Liu Jun-Tao, Bai Xiang. Research and perspective on shape matching. Acta Automatica Sinica, 2012, 38(6): 889-910 http://www.aas.net.cn/CN/abstract/abstract13357.shtml
|
[8]
|
Wang C Y, Wang Y Z, Lin Z C, Yuille A L, Gao W. Robust estimation of 3D human poses from a single image. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2014. 2369-2376 http://arxiv.org/abs/1406.2282
|
[9]
|
Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074 doi: 10.1109/TPAMI.2003.1227983
|
[10]
|
Gu L, Kanade T. 3D alignment of face in a single image. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 1305-1312 http://dl.acm.org/citation.cfm?id=1153537
|
[11]
|
Cao C, Weng Y L, Lin S, Zhou K. 3D shape regression for real-time facial animation. ACM Transactions on Graphics, 2013, 32(4): Article No. 41 https://download.csdn.net/download/u012496255/7799641
|
[12]
|
Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8 doi: 10.1109/CVPR.2008.4587597
|
[13]
|
Lin Y L, Morariu V I, Hsu W, Davis L S. Jointly optimizing 3D model fitting and fine-grained classification. In: Proceedings of the 2014 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 8692. Heidelberg, Berlin, Germany: Springer, 2014. 466-480 doi: 10.1007/978-3-319-10593-2_31
|
[14]
|
Ramakrishna V, Kanade T, Sheikh Y. Reconstructing 3D human pose from 2D image landmarks. In: Proceedings of the 2012 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 7575. Heidelberg, Berlin, Germany: Springer, 2012. 573-586 doi: 10.1007/978-3-642-33765-9_41
|
[15]
|
Fan X C, Zheng K, Zhou Y J, Wang S. Pose locality constrained representation for 3D human pose reconstruction. In: Proceedings of the 2014 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 8689. Heidelberg, Berlin, Germany: Springer, 2014. 174-188
|
[16]
|
Zhou F, de la Torre F. Spatio-temporal Matching for human detection in video. In: Proceedings of the 2014 Computer Vision, Lecture Notes in Computer Science, Vol. 8694. Heidelberg, Berlin, Germany: Springer, 2014. 62-77
|
[17]
|
Akhter I, Black M J. Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1446-1455 https://www.researchgate.net/publication/298380919_Pose-Conditioned_Joint_Angle_Limits_for_3D_Human_Pose_Reconstruction
|
[18]
|
Cashman T J, Fitzgibbon A W. What shape are dolphins? Building 3D morphable models from 2D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 232-244 doi: 10.1109/TPAMI.2012.68
|
[19]
|
Vicente S, Carreira J, Agapito L, Batosta J. Reconstructing PASCAL VOC. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 41-48 http://dl.acm.org/citation.cfm?id=2679600.2679960
|
[20]
|
Carreira J, Kar A, Tulsiani S, Malik J. Virtual view networks for object reconstruction. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2937-2946 http://arxiv.org/abs/1411.6091
|
[21]
|
Kar A, Tulsiani S, Carreira J, Malik J. Category-specific object reconstruction from a single image. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1966-1974 http://arxiv.org/abs/1411.6069
|
[22]
|
Su H, Huang Q X, Mitra N J, Li Y Y, Guibas L. Estimating image depth using shape collections. ACM Transactions on Graphics, 2014, 33(4): Article No. 37 http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/image_shape_net/imageShapeNet_sigg14.html
|
[23]
|
Huang Q X, Wang H, Koltun V. Single-view reconstruction via joint analysis of image and shape collections. ACM Transactions on Graphics, 2015, 34(4): Article No. 87 http://vladlen.info/publications/single-view-reconstruction-via-joint-analysis-of-image-and-shape-collections/
|
[24]
|
Zhou X W, Leonardos S, Hu X Y, Daniilidis K. 3D shape estimation from 2d landmarks: a convex relaxation approach. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 4447-4455 http://ieeexplore.ieee.org/document/7299074/
|
[25]
|
Zhou X W, Zhu M L, Leonardos S, Daniilidis K. Sparse representation for 3D shape estimation: a convex relaxation approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1648-1661 doi: 10.1109/TPAMI.2016.2605097
|
[26]
|
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273-282 doi: 10.1111/rssb.2011.73.issue-3
|
[27]
|
Chen S, Donoho D. Basis pursuit. In: Proceedings of the 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2002, 1: 41-44
|
[28]
|
Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Siam Review, 2001, 43(1): 129-159 doi: 10.1137/S003614450037906X
|
[29]
|
Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 2002, 48(9): 2558-2567 doi: 10.1109/TIT.2002.801410
|
[30]
|
Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862 doi: 10.1109/18.959265
|
[31]
|
Xu Z B, Zhang H, Wang Y, Change X Y, Liang Y. L1/2 regularization. Science China Information Sciences, 2010, 53(6): 1159-1169 doi: 10.1007/s11432-010-0090-0
|
[32]
|
Del Bue A, Xavier J, Agapito L, Paladini M. Bilinear modeling via augmented lagrange multipliers (BALM). IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1496-1508 doi: 10.1109/TPAMI.2011.238
|
[33]
|
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122 http://www.nowpublishers.com/article/Details/MAL-016
|
[34]
|
Parikh N, Boyd S. Proximal algorithms. Foundations and Trends in Optimization, 2013, 1(3): 123-231 https://web.stanford.edu/~boyd/papers/prox_algs.html
|
[35]
|
Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 2010, 11: 19-60 https://www.researchgate.net/publication/45865402_Online_Learning_for_Matrix_Factorization_and_Sparse_Coding
|
[36]
|
Mocap: Carnegie Mellon university motion capture database[Online], available: http://Mocap.cs.cmu.edu/, March 1, 2017
|
[37]
|
朱煜, 赵江坤, 王逸宁, 郑兵兵.基于深度学习的人体行为识别算法综述.自动化学报, 2016, 42(6): 848-857 http://www.aas.net.cn/CN/abstract/abstract18875.shtmlZhu Yu, Zhao Jiang-Kun, Wang Yi-Ning, Zheng Bing-Bing. A review of human action recognition based on deep learning. Acta Automatica Sinica, 2016, 42(6): 848-857 http://www.aas.net.cn/CN/abstract/abstract18875.shtml
|
[38]
|
Zhou X W, Zhu M L, Pavlakos G, Leonardos S, Derpanis K G, Daniilidis K. MonoCap: monocular human motion capture using a CNN coupled with a geometric prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, DOI: 10.1109/TPAMI.2018.2816031
|
[39]
|
Zhou X W, Zhu M L, Leonardos S, Derpanis K G, Daniilidis K. Sparseness meets deepness: 3D human pose estimation from monocular video. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 4966-4975
|