2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于L1/2正则化的三维人体姿态重构

洪金华 张荣 郭立君

洪金华, 张荣, 郭立君. 基于L1/2正则化的三维人体姿态重构. 自动化学报, 2018, 44(6): 1086-1095. doi: 10.16383/j.aas.2018.c170199
引用本文: 洪金华, 张荣, 郭立君. 基于L1/2正则化的三维人体姿态重构. 自动化学报, 2018, 44(6): 1086-1095. doi: 10.16383/j.aas.2018.c170199
HONG Jin-Hua, ZHANG Rong, GUO Li-Jun. 3D Human Body Pose Reconstruction via L1/2 Regularization. ACTA AUTOMATICA SINICA, 2018, 44(6): 1086-1095. doi: 10.16383/j.aas.2018.c170199
Citation: HONG Jin-Hua, ZHANG Rong, GUO Li-Jun. 3D Human Body Pose Reconstruction via L1/2 Regularization. ACTA AUTOMATICA SINICA, 2018, 44(6): 1086-1095. doi: 10.16383/j.aas.2018.c170199

基于L1/2正则化的三维人体姿态重构

doi: 10.16383/j.aas.2018.c170199
基金项目: 

浙江省公益技术研究计划 LGF18F020007

浙江省自然科学基金 LY17F030002

详细信息
    作者简介:

    洪金华  宁波大学信息科学与工程学院计算机应用技术硕士研究生.主要研究方向为机器学习, 计算机视觉与模式识别.E-mail:18892627653@163.com

    张荣  宁波大学信息科学与工程学院副教授.主要研究方向为计算机视觉, 数字取证与信息安全.E-mail:zhangrong@nbu.edu.cn

    通讯作者:

    郭立君  宁波大学信息科学与工程学院教授.主要研究方向为机器学习, 计算机视觉与模式识别.本文通信作者.E-mail:guolijun@nbu.edu.cn

3D Human Body Pose Reconstruction via L1/2 Regularization

Funds: 

Zhejiang Provincial Public Welfare Technology Research Project LGF18F020007

Zhejiang Provincial Natural Science Foundation LY17F030002

More Information
    Author Bio:

     Master student at the Faculty of Electrical Engineering and Computer Science, Ningbo University. His research interest covers machine learning, computer vision and pattern recognition

     Associate professor at the Faculty of Electrical Engineering and Computer Science, Ningbo University. Her research interest covers computer vision, digital forensics and information security

    Corresponding author: GUO Li-Jun  Professor at the Faculty of Electrical Engineering and Computer Science, Ningbo University. His research interest covers machine learning, computer vision and pattern recognition. Corresponding author of this paper
  • 摘要: 针对从给定2D特征点的单目图像中重构对象的3D形状问题,本文在形状空间模型的基础上,结合L1/2正则化和谱范数的性质提出一种基于L1/2正则化的凸松弛方法,将形状空间模型的非凸求解问题通过凸松弛方法转化为凸规划问题;在采用ADMM算法对凸规划问题进行优化求解过程中,提出谱范数近端梯度算法保证解的正交性与稀疏性.利用所提的优化方法,基于形状空间模型和3D可变形状模型在卡内基梅隆大学运动捕获数据库上进行3D人体姿态重构,定性和定量对比实验结果表明本文方法均优于现有的优化方法,验证了所提方法的有效性.
    1)  本文责任编委 杨健
  • 图  1  三种方法的定性实验效果对比图

    Fig.  1  The comparison of qualitative experiment results of three methods

    图  2  三种方法的重构误差对比图

    Fig.  2  The reconstruction error comparison of three methods

    图  3  重构误差的盒图

    Fig.  3  The box diagram of reconstruction error

    图  4  三种方法的稀疏度对比图

    Fig.  4  The sparse contrast graphs of three methods

    图  5  三种方法的定性实验效果对比图

    Fig.  5  The qualitative experiment effect contrast chart of the three methods

    图  6  三种方法的重构误差对比图

    Fig.  6  The reconstruction error contrast chart of three methods

    图  7  重构误差的盒图

    Fig.  7  The box diagram of reconstruction error

    图  8  三种方法的稀疏度对比图

    Fig.  8  The sparse contrast graphs of three methods

  • [1] Fidler S, Dickinson S, Urtasun R. 3D object detection and viewpoint estimation with a deformable 3D cuboid model. In: Proceedings of the 2012 International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 611-619 http://dl.acm.org/citation.cfm?id=2999134.2999203
    [2] Simo-Serra E, Quattoni A, Torras C, Moreno-Noguer F. A joint model for 2D and 3D pose estimation from a single image. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA: IEEE, 2013. 3634-3641 http://dl.acm.org/citation.cfm?id=2516195
    [3] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models-their training and application. Computer Vision and Image Understanding, 1995, 61(1): 38-59 doi: 10.1006/cviu.1995.1004
    [4] Hejrati M, Ramanan D. Analyzing 3D objects in cluttered images. In: Proceeding of the 2012 International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA: Curran Associates Inc., 2012. 593-601 http://dl.acm.org/citation.cfm?id=2999134.2999201
    [5] Zia M Z, Stark M, Schiele B, Schindler K. Detailed 3d representations for object recognition and modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2608-2623 doi: 10.1109/TPAMI.2013.87
    [6] 方红, 杨海蓉.贪婪算法与压缩感知理论.自动化学报, 2011, 37(12): 1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtml

    Fang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12): 1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtml
    [7] 周瑜, 刘俊涛, 白翔.形状匹配方法研究与展望.自动化学报, 2012, 38(6): 889-910 http://www.aas.net.cn/CN/abstract/abstract13357.shtml

    Zhou Yu, Liu Jun-Tao, Bai Xiang. Research and perspective on shape matching. Acta Automatica Sinica, 2012, 38(6): 889-910 http://www.aas.net.cn/CN/abstract/abstract13357.shtml
    [8] Wang C Y, Wang Y Z, Lin Z C, Yuille A L, Gao W. Robust estimation of 3D human poses from a single image. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2014. 2369-2376 http://arxiv.org/abs/1406.2282
    [9] Blanz V, Vetter T. Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1063-1074 doi: 10.1109/TPAMI.2003.1227983
    [10] Gu L, Kanade T. 3D alignment of face in a single image. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 1305-1312 http://dl.acm.org/citation.cfm?id=1153537
    [11] Cao C, Weng Y L, Lin S, Zhou K. 3D shape regression for real-time facial animation. ACM Transactions on Graphics, 2013, 32(4): Article No. 41 https://download.csdn.net/download/u012496255/7799641
    [12] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8 doi: 10.1109/CVPR.2008.4587597
    [13] Lin Y L, Morariu V I, Hsu W, Davis L S. Jointly optimizing 3D model fitting and fine-grained classification. In: Proceedings of the 2014 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 8692. Heidelberg, Berlin, Germany: Springer, 2014. 466-480 doi: 10.1007/978-3-319-10593-2_31
    [14] Ramakrishna V, Kanade T, Sheikh Y. Reconstructing 3D human pose from 2D image landmarks. In: Proceedings of the 2012 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 7575. Heidelberg, Berlin, Germany: Springer, 2012. 573-586 doi: 10.1007/978-3-642-33765-9_41
    [15] Fan X C, Zheng K, Zhou Y J, Wang S. Pose locality constrained representation for 3D human pose reconstruction. In: Proceedings of the 2014 European Conference on Computer Vision, Lecture Notes in Computer Science, Vol. 8689. Heidelberg, Berlin, Germany: Springer, 2014. 174-188
    [16] Zhou F, de la Torre F. Spatio-temporal Matching for human detection in video. In: Proceedings of the 2014 Computer Vision, Lecture Notes in Computer Science, Vol. 8694. Heidelberg, Berlin, Germany: Springer, 2014. 62-77
    [17] Akhter I, Black M J. Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1446-1455 https://www.researchgate.net/publication/298380919_Pose-Conditioned_Joint_Angle_Limits_for_3D_Human_Pose_Reconstruction
    [18] Cashman T J, Fitzgibbon A W. What shape are dolphins? Building 3D morphable models from 2D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 232-244 doi: 10.1109/TPAMI.2012.68
    [19] Vicente S, Carreira J, Agapito L, Batosta J. Reconstructing PASCAL VOC. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 41-48 http://dl.acm.org/citation.cfm?id=2679600.2679960
    [20] Carreira J, Kar A, Tulsiani S, Malik J. Virtual view networks for object reconstruction. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2937-2946 http://arxiv.org/abs/1411.6091
    [21] Kar A, Tulsiani S, Carreira J, Malik J. Category-specific object reconstruction from a single image. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 1966-1974 http://arxiv.org/abs/1411.6069
    [22] Su H, Huang Q X, Mitra N J, Li Y Y, Guibas L. Estimating image depth using shape collections. ACM Transactions on Graphics, 2014, 33(4): Article No. 37 http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/image_shape_net/imageShapeNet_sigg14.html
    [23] Huang Q X, Wang H, Koltun V. Single-view reconstruction via joint analysis of image and shape collections. ACM Transactions on Graphics, 2015, 34(4): Article No. 87 http://vladlen.info/publications/single-view-reconstruction-via-joint-analysis-of-image-and-shape-collections/
    [24] Zhou X W, Leonardos S, Hu X Y, Daniilidis K. 3D shape estimation from 2d landmarks: a convex relaxation approach. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 4447-4455 http://ieeexplore.ieee.org/document/7299074/
    [25] Zhou X W, Zhu M L, Leonardos S, Daniilidis K. Sparse representation for 3D shape estimation: a convex relaxation approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1648-1661 doi: 10.1109/TPAMI.2016.2605097
    [26] Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273-282 doi: 10.1111/rssb.2011.73.issue-3
    [27] Chen S, Donoho D. Basis pursuit. In: Proceedings of the 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2002, 1: 41-44
    [28] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. Siam Review, 2001, 43(1): 129-159 doi: 10.1137/S003614450037906X
    [29] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, 2002, 48(9): 2558-2567 doi: 10.1109/TIT.2002.801410
    [30] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862 doi: 10.1109/18.959265
    [31] Xu Z B, Zhang H, Wang Y, Change X Y, Liang Y. L1/2 regularization. Science China Information Sciences, 2010, 53(6): 1159-1169 doi: 10.1007/s11432-010-0090-0
    [32] Del Bue A, Xavier J, Agapito L, Paladini M. Bilinear modeling via augmented lagrange multipliers (BALM). IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1496-1508 doi: 10.1109/TPAMI.2011.238
    [33] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122 http://www.nowpublishers.com/article/Details/MAL-016
    [34] Parikh N, Boyd S. Proximal algorithms. Foundations and Trends in Optimization, 2013, 1(3): 123-231 https://web.stanford.edu/~boyd/papers/prox_algs.html
    [35] Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 2010, 11: 19-60 https://www.researchgate.net/publication/45865402_Online_Learning_for_Matrix_Factorization_and_Sparse_Coding
    [36] Mocap: Carnegie Mellon university motion capture database[Online], available: http://Mocap.cs.cmu.edu/, March 1, 2017
    [37] 朱煜, 赵江坤, 王逸宁, 郑兵兵.基于深度学习的人体行为识别算法综述.自动化学报, 2016, 42(6): 848-857 http://www.aas.net.cn/CN/abstract/abstract18875.shtml

    Zhu Yu, Zhao Jiang-Kun, Wang Yi-Ning, Zheng Bing-Bing. A review of human action recognition based on deep learning. Acta Automatica Sinica, 2016, 42(6): 848-857 http://www.aas.net.cn/CN/abstract/abstract18875.shtml
    [38] Zhou X W, Zhu M L, Pavlakos G, Leonardos S, Derpanis K G, Daniilidis K. MonoCap: monocular human motion capture using a CNN coupled with a geometric prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, DOI: 10.1109/TPAMI.2018.2816031
    [39] Zhou X W, Zhu M L, Leonardos S, Derpanis K G, Daniilidis K. Sparseness meets deepness: 3D human pose estimation from monocular video. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 4966-4975
  • 加载中
图(8)
计量
  • 文章访问数:  2057
  • HTML全文浏览量:  295
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 录用日期:  2018-02-07
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回