2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带未知耦合权重的领导-跟随多智能体系统的实用一致性

张文 马忠军 王毅

张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性. 自动化学报, 2018, 44(12): 2300-2304. doi: 10.16383/j.aas.2018.c170193
引用本文: 张文, 马忠军, 王毅. 带未知耦合权重的领导-跟随多智能体系统的实用一致性. 自动化学报, 2018, 44(12): 2300-2304. doi: 10.16383/j.aas.2018.c170193
ZHANG Wen, MA Zhong-Jun, WANG Yi. Practical Consensus of Leader-following Multi-agent System With Unknown Coupling Weights. ACTA AUTOMATICA SINICA, 2018, 44(12): 2300-2304. doi: 10.16383/j.aas.2018.c170193
Citation: ZHANG Wen, MA Zhong-Jun, WANG Yi. Practical Consensus of Leader-following Multi-agent System With Unknown Coupling Weights. ACTA AUTOMATICA SINICA, 2018, 44(12): 2300-2304. doi: 10.16383/j.aas.2018.c170193

带未知耦合权重的领导-跟随多智能体系统的实用一致性

doi: 10.16383/j.aas.2018.c170193
基金项目: 

桂林电子科技大学研究生教育创新计划资助项目 2017YJCX79

国家自然科学基金 11562 006

浙江省自然科学基金 LY17A020007

广西可信软件重点实验室基金 KX201612

国家自然科学基金 61663006

广西自然科学基金 2016GXNSFDA380031

广西自然科学基金 201 5GXNSFAA139013

详细信息
    作者简介:

    张文  桂林电子科技大学硕士研究生.主要研究方向为多智能体系统和复杂网络.E-mail:zhangwen_2623@163.com

    王毅   浙江财经大学数据科学学院副教授.2003年获得浙江师范大学硕士学位, 2009年获得上海大学博士学位.主要研究方向为多智能体系统, 非线性系统与控制, 复杂网络以及生物系统.E-mail:wangyihzh@gmail.com

    通讯作者:

    马忠军  桂林电子科技大学数学与计算科学学院教授.2004年获得昆明理工大学硕士学位, 2007年获得上海大学博士学位.主要研究方向为多智能体系统, 非线性系统和复杂网络.本文通信作者.E-mail:mzj1234402@163.com

Practical Consensus of Leader-following Multi-agent System With Unknown Coupling Weights

Funds: 

Innovation Project of GUET Graduate Education 2017YJCX79

National Natural Science Foundation of China 11562 006

Zhejiang Provincial Natural Science Foundation of China LY17A020007

Guangxi Key Laboratory of Trusted Software KX201612

National Natural Science Foundation of China 61663006

Natural Science Foundation of Guangxi 2016GXNSFDA380031

Natural Science Foundation of Guangxi 201 5GXNSFAA139013

More Information
    Author Bio:

      Master student at Guilin University of Electronic Technology. His research interest covers multi-agent systems and complex networks

       Associate professor at the School of Data Science, Zhejiang University of Finance and Economics. He received his master degree from Zhejiang Normal University in 2003, and Ph. D. degree from Shanghai University in 2009. His research interest covers multi-agent systems, nonlinear systems and control, complex networks, and biology systems

    Corresponding author: MA Zhong-Jun    Professor at the School of Mathematics and Computing Science, Guilin University of Electronic Technology. He received his master degree from Kunming University of Science and Technology in 2004, and Ph. D. degree from Shanghai University in 2007. His research interest covers multi-agent systems, nonlinear systems, and complex networks. Corresponding author of this paper
  • 摘要: 一致性理论在许多领域有广泛应用.现有很多研究成果是关于恒同一致的.在实际中,由于任何系统都会不可避免地受到一定的外界扰动,要求误差函数的极限等于0是难以做到的,但当时间充分大时误差函数在可接受区间内是可行的.本文首先给出多智能体系统的实用一致性概念,然后研究含未知耦合权重的一阶非线性领导-跟随多智能体系统的实用一致性问题.通过设计合适的控制协议,运用图论、矩阵理论和强实用稳定性理论,得到该多智能体系统实现实用一致性的充分条件.数值模拟验证了理论结果的正确性.
    1)  本文责任编委 郭戈
  • 图  1  拓扑结构图

    Fig.  1  Topology mode

    图  2  理想系统随时间变化的偏差轨迹

    Fig.  2  Error trajectories of ideal multi-agent systems

    图  3  真实系统随时间变化的偏差轨迹

    Fig.  3  Error trajectories of real multi-agent systems

  • [1] Hu W F, Liu L, Feng G. Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Transactions on Cybernetics, 2016, 46(1):148-157 doi: 10.1109/TCYB.2015.2398892
    [2] Lu J Q, Ho D W C, Kurths J. Consensus over directed static networks with arbitrary finite communication delays. Physical Review E, 2009, 80(6): Article No. 066121
    [3] Xiao F, Wang L, Chen J. Partial state consensus for networks of second-order dynamic agents. Systems and Control Letters, 2010, 59(12):775-781 doi: 10.1016/j.sysconle.2010.09.003
    [4] Li T, Xie L H. Distributed consensus over digital networks with limited bandwidth and time-varying topologies. Automatica, 2011, 47(9):2006-2015 doi: 10.1016/j.automatica.2011.05.017
    [5] 王沛, 吕金虎.基因调控网络的控制:机遇与挑战.自动化学报, 2013, 39(12):1969-1979 doi: 10.3724/SP.J.1004.2013.01969

    Wang Pei, Lv Jin-Hu. Control of genetic regulatory networks:opportunities and challenges. Acta Automatica Sinica, 2013, 39(12):1969-1979 doi: 10.3724/SP.J.1004.2013.01969
    [6] Lu J Q, Zhong J, Huang C, Cao J D. On pinning controllability of Boolean control networks. IEEE Transactions on Automatic Control, 2016, 61(6):1658-1663 doi: 10.1109/TAC.2015.2478123
    [7] Lu J Q, Ding C D, Lou J G, Cao J D. Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. Journal of the Franklin Institute, 2015, 352(11):5024-5041 doi: 10.1016/j.jfranklin.2015.08.016
    [8] 赵俊, 刘国平.非完整性约束的平面多智能体位置时变一致性控制.自动化学报, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/Y2017/V43/I7/1169

    Zhao Jun, Liu Guo-Ping. Position time-varying consensus control for multiple planar agents with non-holonomic constraint. Acta Automatica Sinica, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/Y2017/V43/I7/1169
    [9] Wang Z H, Xu J J, Zhang H S. Consensus seeking for discrete-time multi-agent systems with communication delay. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2):151-157 doi: 10.1109/JAS.2015.7081654
    [10] Zeng L, Hu G D. Consensus of linear multi-agent systems with communication and input delays. Acta Automatica Sinica, 2013, 39(7):1133-1140 doi: 10.1016/S1874-1029(13)60068-3
    [11] Guan Z H, Hu B, Chi M, He D X, Cheng X M. Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica, 2014, 50(9):2415-2418 doi: 10.1016/j.automatica.2014.07.008
    [12] 杨洪勇, 郭雷, 张玉玲, 姚秀明.离散时间分数阶多自主体系统的时延一致性.自动化学报, 2014, 40(9):2022-2028 http://www.aas.net.cn/CN/Y2014/V40/I9/2022

    Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Delay consensus of fractional-order multi-agent systems with sampling delays. Acta Automatica Sinica, 2014, 40(9):2022-2028 http://www.aas.net.cn/CN/Y2014/V40/I9/2022
    [13] Li L L, Ho D W C, Lu J Q. A consensus recovery approach to nonlinear multi-agent system under node failure. Information Sciences, 2016, 367-368:975-989 doi: 10.1016/j.ins.2016.06.050
    [14] Wen G G, Peng Z X, Rahmani A, Yu Y G. Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. International Journal of Systems Science, 2014, 45(9):1892-1901 doi: 10.1080/00207721.2012.757386
    [15] Ma Z J, Wang Y, Li X M. Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics. Nonlinear Dynamics, 2016, 83(3):1303-1310 doi: 10.1007/s11071-015-2403-8
    [16] Peng K, Yang Y P. Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A:Statistical Mechanics and Its Applications, 2009, 388(2-3):193-208 doi: 10.1016/j.physa.2008.10.009
    [17] Wang Y, Ma Z J. Lag consensus of the second-order leader-following multi-agent systems with nonlinear dynamics. Neurocomputing, 2016, 171:82-88 doi: 10.1016/j.neucom.2015.06.020
    [18] Dong X W, Xi J X, Shi Z Y, Zhong Y S. Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances. International Journal of Systems Science, 2013, 44(10):1843-1856 doi: 10.1080/00207721.2012.670296
    [19] Li L L, Ho D W C, Lu J Q. A unified approach to practical consensus with quantized data and time delay. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(10):2668-2678 doi: 10.1109/TCSI.2013.2244322
    [20] 廖晓昕.稳定性的数学理论及应用.第2版.武汉:华中师范大学出版社, 2001.

    Liao Xiao-Xin. Mathematical Theory of Stability and Its Application (2nd edition). Wuhan:Central China Normal University Press, 2001.
    [21] Liu B, Lu W L, Chen T P. New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides. Neural Networks, 2012, 25:5-13 doi: 10.1016/j.neunet.2011.07.007
    [22] Wu W, Chen T P. Partial synchronization in linearly and symmetrically coupled ordinary differential systems. Physica D:Nonlinear Phenomena, 2009, 238(4):355-364 doi: 10.1016/j.physd.2008.10.012
    [23] Bhatia R. Matrix Analysis. New York: Springer, 1996.
    [24] Shil'nikov L P. Chua's circuit:rigorous results and future problems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1993, 40(10):784-786 doi: 10.1109/81.246153
  • 加载中
图(3)
计量
  • 文章访问数:  1831
  • HTML全文浏览量:  287
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 录用日期:  2017-09-15
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回