[1]
|
Hu W F, Liu L, Feng G. Consensus of linear multi-agent systems by distributed event-triggered strategy. IEEE Transactions on Cybernetics, 2016, 46(1):148-157 doi: 10.1109/TCYB.2015.2398892
|
[2]
|
Lu J Q, Ho D W C, Kurths J. Consensus over directed static networks with arbitrary finite communication delays. Physical Review E, 2009, 80(6): Article No. 066121
|
[3]
|
Xiao F, Wang L, Chen J. Partial state consensus for networks of second-order dynamic agents. Systems and Control Letters, 2010, 59(12):775-781 doi: 10.1016/j.sysconle.2010.09.003
|
[4]
|
Li T, Xie L H. Distributed consensus over digital networks with limited bandwidth and time-varying topologies. Automatica, 2011, 47(9):2006-2015 doi: 10.1016/j.automatica.2011.05.017
|
[5]
|
王沛, 吕金虎.基因调控网络的控制:机遇与挑战.自动化学报, 2013, 39(12):1969-1979 doi: 10.3724/SP.J.1004.2013.01969Wang Pei, Lv Jin-Hu. Control of genetic regulatory networks:opportunities and challenges. Acta Automatica Sinica, 2013, 39(12):1969-1979 doi: 10.3724/SP.J.1004.2013.01969
|
[6]
|
Lu J Q, Zhong J, Huang C, Cao J D. On pinning controllability of Boolean control networks. IEEE Transactions on Automatic Control, 2016, 61(6):1658-1663 doi: 10.1109/TAC.2015.2478123
|
[7]
|
Lu J Q, Ding C D, Lou J G, Cao J D. Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers. Journal of the Franklin Institute, 2015, 352(11):5024-5041 doi: 10.1016/j.jfranklin.2015.08.016
|
[8]
|
赵俊, 刘国平.非完整性约束的平面多智能体位置时变一致性控制.自动化学报, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/Y2017/V43/I7/1169Zhao Jun, Liu Guo-Ping. Position time-varying consensus control for multiple planar agents with non-holonomic constraint. Acta Automatica Sinica, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/Y2017/V43/I7/1169
|
[9]
|
Wang Z H, Xu J J, Zhang H S. Consensus seeking for discrete-time multi-agent systems with communication delay. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2):151-157 doi: 10.1109/JAS.2015.7081654
|
[10]
|
Zeng L, Hu G D. Consensus of linear multi-agent systems with communication and input delays. Acta Automatica Sinica, 2013, 39(7):1133-1140 doi: 10.1016/S1874-1029(13)60068-3
|
[11]
|
Guan Z H, Hu B, Chi M, He D X, Cheng X M. Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica, 2014, 50(9):2415-2418 doi: 10.1016/j.automatica.2014.07.008
|
[12]
|
杨洪勇, 郭雷, 张玉玲, 姚秀明.离散时间分数阶多自主体系统的时延一致性.自动化学报, 2014, 40(9):2022-2028 http://www.aas.net.cn/CN/Y2014/V40/I9/2022Yang Hong-Yong, Guo Lei, Zhang Yu-Ling, Yao Xiu-Ming. Delay consensus of fractional-order multi-agent systems with sampling delays. Acta Automatica Sinica, 2014, 40(9):2022-2028 http://www.aas.net.cn/CN/Y2014/V40/I9/2022
|
[13]
|
Li L L, Ho D W C, Lu J Q. A consensus recovery approach to nonlinear multi-agent system under node failure. Information Sciences, 2016, 367-368:975-989 doi: 10.1016/j.ins.2016.06.050
|
[14]
|
Wen G G, Peng Z X, Rahmani A, Yu Y G. Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. International Journal of Systems Science, 2014, 45(9):1892-1901 doi: 10.1080/00207721.2012.757386
|
[15]
|
Ma Z J, Wang Y, Li X M. Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics. Nonlinear Dynamics, 2016, 83(3):1303-1310 doi: 10.1007/s11071-015-2403-8
|
[16]
|
Peng K, Yang Y P. Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A:Statistical Mechanics and Its Applications, 2009, 388(2-3):193-208 doi: 10.1016/j.physa.2008.10.009
|
[17]
|
Wang Y, Ma Z J. Lag consensus of the second-order leader-following multi-agent systems with nonlinear dynamics. Neurocomputing, 2016, 171:82-88 doi: 10.1016/j.neucom.2015.06.020
|
[18]
|
Dong X W, Xi J X, Shi Z Y, Zhong Y S. Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances. International Journal of Systems Science, 2013, 44(10):1843-1856 doi: 10.1080/00207721.2012.670296
|
[19]
|
Li L L, Ho D W C, Lu J Q. A unified approach to practical consensus with quantized data and time delay. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(10):2668-2678 doi: 10.1109/TCSI.2013.2244322
|
[20]
|
廖晓昕.稳定性的数学理论及应用.第2版.武汉:华中师范大学出版社, 2001.Liao Xiao-Xin. Mathematical Theory of Stability and Its Application (2nd edition). Wuhan:Central China Normal University Press, 2001.
|
[21]
|
Liu B, Lu W L, Chen T P. New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides. Neural Networks, 2012, 25:5-13 doi: 10.1016/j.neunet.2011.07.007
|
[22]
|
Wu W, Chen T P. Partial synchronization in linearly and symmetrically coupled ordinary differential systems. Physica D:Nonlinear Phenomena, 2009, 238(4):355-364 doi: 10.1016/j.physd.2008.10.012
|
[23]
|
Bhatia R. Matrix Analysis. New York: Springer, 1996.
|
[24]
|
Shil'nikov L P. Chua's circuit:rigorous results and future problems. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1993, 40(10):784-786 doi: 10.1109/81.246153
|