[1]
|
刘松涛, 杨绍清.基于元胞自动机的红外弱小目标图像分割.红外与毫米波学报, 2008, 27(1):42-46 doi: 10.3321/j.issn:1001-9014.2008.01.010Liu Song-Tao, Yang Shao-Qing. Segmentation of infrared weak and small target image based on cellular automata. Journal of Infrared and Millimeter Waves, 2008, 27(1):42-46 doi: 10.3321/j.issn:1001-9014.2008.01.010
|
[2]
|
Rajchl M, Lee M C H, Oktay O, Kamnitsas K, Passerat-Palmbach J, Bai W J, et al. DeepCut:object segmentation from bounding box annotations using convolutional neural networks. IEEE Transactions on Medical Imaging, 2016, 36(2):674-683 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029696105/
|
[3]
|
Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259 doi: 10.1109/34.730558
|
[4]
|
Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing. In: Proceedings of the 11th ACM International Conference on Multimedia. Berkeley, CA, USA: ACM, 2003. 374-381 http://www.mendeley.com/catalog/contrastbased-image-attention-analysis-using-fuzzy-growing/
|
[5]
|
Hou X D, Zhang L Q. Saliency detection: a spectral residual approach. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1-8 http://www.mendeley.com/catalog/saliency-detection-spectral-residual-approach/
|
[6]
|
Guo C L, Ma Q, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008. 1-8 http://www.mendeley.com/catalog/spatiotemporal-saliency-detection-using-phase-spectrum-quaternion-fourier-transform/
|
[7]
|
Jung C, Kim C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation. IEEE Transactions on Image Processing, 2012, 21(3):1272-1283 doi: 10.1109/TIP.2011.2164420
|
[8]
|
He X, Jing H Y, Han Q, Niu X M. Salient region detection combining spatial distribution and global contrast. Optical Engineering, 2012, 51(4):Article No. 047007 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226257555/
|
[9]
|
Zhang Y B, Han J W, Guo L. Image saliency detection based on histogram. Journal of Computational Information Systems, 2014, 10(6):2417-2424
|
[10]
|
Xu L F, Li H L, Zeng L Y, Ngan K N. Saliency detection using joint spatial-color constraint and multi-scale segmentation. Journal of Visual Communication and Image Representation, 2013, 24(4):465-476 doi: 10.1016/j.jvcir.2013.02.007
|
[11]
|
Liu S T, Shen T S, Dai Y. Infrared image segmentation method based on spatial coherence histogram and maximum entropy. In: Proceedings of the 2014 SPIE 9275, Infrared, Millimeter-Wave, and Terahertz Technologies Ⅲ. Beijing, China: SPIE, 2014. 1-8 http://www.deepdyve.com/lp/spie/infrared-image-segmentation-method-based-on-spatial-coherence-JDWSMYXGT0
|
[12]
|
Li J, Levine M D, Aa X J, He H G. Saliency detection based on frequency and spatial domain analyses. In: Proceedings of the 2011 British Machine Vision Conference. Dundee, Scotland, UK: BMVA, 2011. 1-11
|
[13]
|
Cheng M M, Zhang G X, Mitra N J, Huang X L, Hu S M. Global contrast based salient region detection. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2011. 409-416 https://www.ncbi.nlm.nih.gov/pubmed/26353262
|
[14]
|
Perazzi F, Krähenbuhl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2012. 733-740 http://dl.acm.org/citation.cfm?id=2355041
|
[15]
|
Liu T, Sun J, Zheng N N, Tang X O, Shum H Y. Learning to detect a salient object. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4270072
|
[16]
|
Yang J M, Yang M H. Top-down visual saliency via joint CRF and dictionary learning. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA: IEEE, 2012. 2296-2303 https://www.mendeley.com/catalogue/topdown-visual-saliency-via-joint-crf-dictionary-learning/
|
[17]
|
Kocak A, Cizmeciler K, Erdem A, Erdem E. Top down saliency estimation via superpixel-based discriminative dictionaries. In: Proceedings of the 2014 British Machine Vision Conference. Nottingham, UK: BMVA, 2014. 1-12
|
[18]
|
Jiang H Z, Wang J D, Yuan Z J, Wu Y, Zheng N N, Li S P. Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, Oregon, USA: IEEE, 2013. 2083-2090 doi: 10.1007/s11263-016-0977-3
|
[19]
|
Zhang L, Tong M H, Marks T K, Shan H, Cottrell G W. SUN:a Bayesian framework for saliency using natural statistics. Journal of Vision, 2008, 8(7):Article No. 32 doi: 10.1167/8.7.32
|
[20]
|
Cholakkal H, Johnson J, Rajan D. Backtracking ScSPM image classifier for weakly supervised top-down saliency. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 5278-5287 http://ieeexplore.ieee.org/document/7780939/
|
[21]
|
Peng H P, Li B, Ling H B, Hu W M, Xiong W H, Maybank S J. Salient object detection via structured matrix decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):818-832 doi: 10.1109/TPAMI.2016.2562626
|
[22]
|
Lampert C H, Blaschko M B, Hofmann T S. Beyond sliding windows: object localization by efficient subwindow search. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008. 1-8
|
[23]
|
Ye L, Yuan J S, Xue P, Tian Q. Saliency density maximization for object detection and localization. In: Proceedings of the 10th Asian Conference on Computer Vision. Queenstown, New Zealand: Springer-Verlag, 2010. 396-408 https://www.mendeley.com/catalogue/saliency-density-maximization-object-detection-localization/
|
[24]
|
Gidaris S, Komodakis N. LocNet: improving localization accuracy for object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016. 789-798
|
[25]
|
Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 1597-1604 http://www.mendeley.com/catalog/frequencytuned-salient-region-detection/
|
[26]
|
Liu Z, Shi R, Shen L Q, Xue Y Z, Ngan K N, Zhang Z Y. Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut. IEEE Transactions on Multimedia, 2012, 14(4):1275-1289 doi: 10.1109/TMM.2012.2190385
|
[27]
|
Erdem E, Erdem A. Visual saliency estimation by nonlinearly integrating features using region covariances. Journal of Vision, 2013, 13(4):Article No. 11 doi: 10.1167/13.4.11
|
[28]
|
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282 doi: 10.1109/TPAMI.2012.120
|
[29]
|
Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 589-600 doi: 10.1007/11744047_45
|
[30]
|
刘松涛, 常春, 沈同圣.基于区域协方差的图像特征融合方法.电光与控制, 2015, 22(2):7-11, 16 doi: 10.3969/j.issn.1671-637X.2015.02.002Liu Song-Tao, Chang Chun, Shen Tong-Sheng. An image feature fusion method based on region covariance. Electronics Optics and Control, 2015, 22(2):7-11, 16 doi: 10.3969/j.issn.1671-637X.2015.02.002
|
[31]
|
Hong X P, Chang H, Shan S G, Chen X L, Gao W. Sigma set: a small second order statistical region descriptor. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: USA, 2009. 1802-1809 http://www.mendeley.com/catalog/sigma-set-small-second-order-statistical-region-descriptor/
|
[32]
|
刘松涛, 黄金涛, 刘振兴.基于显著图生成和显著密度最大化的高效子窗口搜索目标检测方法.电光与控制, 2015, 22(12):9-14 http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201512002.htmLiu Song-Tao, Huang Jin-Tao, Liu Zhen-Xing. An ESS target detection method based on itti's saliency map and maximum saliency density. Electronics Optics and Control, 2015, 22(12):9-14 http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201512002.htm
|
[33]
|
Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 2006 Conference Advances in Neural Information Processing Systems. Vancouver, Canada: MIT, 2006. 545-552 https://ieeexplore.ieee.org/document/6287326?reload=true&arnumber=6287326
|
[34]
|
Li J, Levine M D, Aa X J, Xu X, He H G. Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):996-1010 doi: 10.1109/TPAMI.2012.147
|
[35]
|
Achanta R, Süsstrunk S. Saliency detection using maximum symmetric surround. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 2653-2656 https://www.mendeley.com/catalogue/saliency-detection-using-maximum-symmetric-surround/
|
[36]
|
Rahtu E, Kannala J, Salo M. Segmenting salient objects from images and videos. In: Proceedings of the 11th European Conference on Computer Vision: Part V. Crete, Greece: Springer, 2010. 366-379 https://www.mendeley.com/catalogue/segmenting-salient-objects-images-videos/
|
[37]
|
Hou X D, Harel J, Koch C. Image signature:highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1):194-201 doi: 10.1109/TPAMI.2011.146
|
[38]
|
Murray N, Vanrell M, Otazu X, Parraga C A. Saliency estimation using a non-parametric low-level vision model. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2011. 433-440 https://www.mendeley.com/catalogue/saliency-estimation-using-nonparametric-lowlevel-vision-model/
|
[39]
|
Alpert S, Galun M, Basri R, Brandt A. Image segmentation by probabilistic bottom-up aggregation and cue integration. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1-8 https://www.ncbi.nlm.nih.gov/pubmed/21690639
|