2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人体行为识别数据集研究进展

朱红蕾 朱昶胜 徐志刚

朱红蕾, 朱昶胜, 徐志刚. 人体行为识别数据集研究进展. 自动化学报, 2018, 44(6): 978-1004. doi: 10.16383/j.aas.2018.c170043
引用本文: 朱红蕾, 朱昶胜, 徐志刚. 人体行为识别数据集研究进展. 自动化学报, 2018, 44(6): 978-1004. doi: 10.16383/j.aas.2018.c170043
ZHU Hong-Lei, ZHU Chang-Sheng, XU Zhi-Gang. Research Advances on Human Activity Recognition Datasets. ACTA AUTOMATICA SINICA, 2018, 44(6): 978-1004. doi: 10.16383/j.aas.2018.c170043
Citation: ZHU Hong-Lei, ZHU Chang-Sheng, XU Zhi-Gang. Research Advances on Human Activity Recognition Datasets. ACTA AUTOMATICA SINICA, 2018, 44(6): 978-1004. doi: 10.16383/j.aas.2018.c170043

人体行为识别数据集研究进展

doi: 10.16383/j.aas.2018.c170043
基金项目: 

国家自然科学基金 61563030

甘肃省自然科学基金 1610RJZA027

详细信息
    作者简介:

    朱昶胜 兰州理工大学计算机与通信学院教授.2006年获得兰州理工大学博士学位.主要研究方向为高性能计算, 数据分析与理解.E-mail:zhucs2008@163.com

    徐志刚 兰州理工大学计算机与通信学院副教授.2012年获得中国科学院研究生院博士学位.主要研究方向为计算机视觉与图像处理.E-mail:xzgcn@163.com

    通讯作者:

    朱红蕾 兰州理工大学计算机与通信学院博士研究生.2004年获得兰州理工大学硕士学位.主要研究方向为计算机视觉与模式识别.本文通信作者.E-mail:zhuhllut@139.com

Research Advances on Human Activity Recognition Datasets

Funds: 

National Natural Science Foundation of China 61563030

Natural Science Foundation of Gansu Province 1610RJZA027

More Information
    Author Bio:

    Professor at the School of Computer and Conmunacation, Lanzhou University of Technology. He received his Ph. D. degree from Lanzhou University of Technology in 2006. His research interest covers high performance computing, data analysis, and understanding

    Associate professor at the School of Computer and Conmunacation, Lanzhou University of Technology. He received his Ph. D. degree from Graduate University of Chinese Academy of Sciences in 2012. His research interest covers computer vision and image processing

    Corresponding author: ZHU Hong-Lei Ph. D. candidate at the School of Computer and Conmunacation, Lanzhou University of Technology. She received her master degree from Lanzhou University of Technology in 2004. Her research interest covers computer vision and pattern recognition. Corresponding author of this paper
  • 摘要: 人体行为识别是计算机视觉领域的一个研究热点,具有重要理论价值和现实意义.近年来,为了评价人体行为识别方法的性能,大量的公开数据集被创建.本文系统综述了人体行为识别公开数据集的发展与前瞻:首先,对公开数据集的层次与内容进行归纳.根据数据集的数据特点和获取方式的不同,将人体行为识别的公开数据集分成4类.其次,对4类数据集分别描述,并对相应数据集的最新识别率及其研究方法进行对比与分析.然后,通过比较各数据集的信息和特征,引导研究者选取合适的基准数据集来验证其算法的性能,促进人体行为识别技术的发展.最后,给出公开数据集未来发展的趋势与人体行为识别技术的展望.
    1)  本文责任编委 桑农
  • 图  1  KTH数据集示例图[19]

    Fig.  1  Sample images of KTH dataset[19]

    图  2  Sample images of KTH dataset[19]

    Fig.  2  Sample images and silhouettes of Weizmann dataset[24]

    图  3  Hollywood 2数据集示例图[48]

    Fig.  3  Sample images of Hollywood 2 Dataset[48]

    图  4  UCF Sports数据集示例图[50]

    Fig.  4  Sample images of UCF Sports Dataset[50]

    图  5  UCF YouTube数据集示例图[30]

    Fig.  5  Sample images of UCF YouTube Dataset[30]

    图  6  Olympic Sports数据集示例图

    Fig.  6  Sample images of Olympic Sports Dataset

    图  7  HDMB51数据集示例图

    Fig.  7  Sample images of HDMB51 dataset

    图  8  UCF50数据集示例图[33]

    Fig.  8  Sample images of UCF50 dataset[33]

    图  9  UCF101数据集示例图

    Fig.  9  Sample images of UCF101 dataset

    图  10  IXMAS数据集同一动作的5个视角及其剪影示例图

    Fig.  10  Sample images and the corresponding silhouettes for the same action of IXMAS dataset (5 cameras)

    图  11  8个摄像机配置的顶视图[69]

    Fig.  11  The top view of the configuration of 8 cameras[69]

    图  12  MuHAVi数据集的8个视角示例图[69]

    Fig.  12  Sample images of MuHAVi dataset (8 cameras)[69]

    图  13  MuHAVi-Mas数据集的2个视角剪影示例图[69]

    Fig.  13  Sample silhouette images of MuHAVi-MAS dataset (2 cameras)[69]

    图  14  8个摄像机位置和方向的平面图[70]

    Fig.  14  Plan view showing the location and direction of the 8 cameras[70]

    图  15  PETS 2009基准数据集示例图[70]

    Fig.  15  Sample images of PETS 2009 benchmark dataset[70]

    图  16  卡车车载摄像头位置及覆盖范围[71]

    Fig.  16  The on-board camera configuration and coverage[71]

    图  17  停放车辆周围的三种不同行为[91]

    Fig.  17  Three different kinds of behavior recorded around a parked vehicle[91]

    图  18  WARD数据库示例图[93]

    Fig.  18  Sample images of WARD database[93]

    图  19  CMU Mocap数据集示例图

    Fig.  19  Sample images of CMU Mocap dataset dataset

    图  20  Microsoft Kinect相机示例图

    Fig.  20  Sample images of Microsoft Kinect camera

    图  21  MSR Action 3D数据集的深度序列图[95]

    Fig.  21  The sequences of depth maps of MSR Action 3D dataset[95]

    图  22  MSR Daily Activity 3D数据集示例图

    Fig.  22  Sample images of MSR Daily Activity 3D dataset

    图  23  UCF Kinect数据集的骨架示例图[97]

    Fig.  23  Sample skeleton images of UCF Kinect dataset[97]

    图  24  N-UCLA Multiview Action3D数据集示例图

    Fig.  24  Sample images of N-UCLA Multiview Action3D dataset

    图  25  Multiview Action3D的视角分布[104]

    Fig.  25  The view distribution of Multiview Action3D dataset[104]

    图  26  可穿戴惯性传感器及其位置示例图[105]

    Fig.  26  Sample images of the wearable inertial sensor and its placements[105]

    图  27  左臂向右滑行为的多模态数据示例图

    Fig.  27  Sample images of the multimodality data corresponding to the action left arm swipe to the right

    图  28  NTU RGB+D数据集的红外示例图

    Fig.  28  Sample infrared images of NTU RGB+D dataset

    图  29  25个骨架点示意图[106]

    Fig.  29  Configuration of 25 body joints[106]

    表  1  通用数据集的最新研究成果概览表

    Table  1  Summary of state-of-the-art research results on general datasets

    数据集名称最新识别率年份研究方法评价方案
    98.83 %[23]2016MLDFCS: Tr: 16; Te: 9
    KTH98.67 %[22]2016Semantic context feature-tree (MKL)CS: Tr: 16; Te: 9
    98.5 %[43]2015Local region tracking (HBRT/VOC)CS: Tr: 16; Te: 9
    100 %[44]20173D-TCCHOGAC+3D-HOOFGACLOOCV
    100 %[45]2016$\Re$ transform + LLE (SVM)LOOCV
    Weizmann100 %[46]2016SDEG + $\Re$ transformLOOCV
    100 %[47]20143D cuboids + mid-level feature (RF)LOSOCV
    100 %[25]2008Metric learningLOSOCV
    100 %[26]2008Mid-level motion featuresLOOCV
    *Tr: training set; Te: test set; CS: cross-subject; LOOCV: leave-one-out cross validation; LOSOCV: leave-one-subject-out cross validation
    下载: 导出CSV

    表  2  真实场景数据集的最新研究成果概览表

    Table  2  Summary of state-of-the-art research results on real scene datasets

    数据集名称最新识别率年份研究方法评价方案
    62 %[37]2012Asymmetric motions (BoW)Tr: 219 vedios; Te: 211vedios
    Hollywood59.9 %[36]2015DFW (BoW)Tr: 219 vedios; Te: 211vedios
    56.51 %[76]2016STG-MILTr: 219 vedios; Te: 211vedios
    78.6 %[41]2017EPT + DT + VideoDarwin (TCNN)Tr: 823 videos; Te: 884 videos
    Hollywood 278.5 %[40]2017HC-MTL + L/S RegTr: 823 videos; Te: 884 videos
    76.7 %[38]2016HRP + iDT (VGG-16)Tr: 823 videos; Te: 884 videos
    96.2 %[43]2015Local region tracking (HBRT/VOC)all classes
    UCF Sports96 %[44]20173D-TCCHOGAC + 3D-HOOFGACLOOCV
    95.50 %[47]20143D cuboids + mid-level feature (RF)LOOCV
    94.50 %[53]2016HboWLOOCV
    UCF YouTube94.4 %[52]2016CNRF (CNN)LOVOCV
    93.77 %[51]2014FV + SFVLOGOCV
    96.60 %[55]2016VLAD$^3$ + iDT (CNN)each class video: Tr: 40; Te: 10
    Olympic Sports96.5 %[54]2015iDT + HD (multi-layer FV)not mentioned
    93.6 %[77]2017Bag-of-SequenceletsTr: 649 videos; Te: 134 videos
    73.6 %[58]2016scene + motion (DCNN)three train/test splits
    HMDB5169.40 %[57]2016TSN (TCNN)three train/test splits
    69.2 %[56]2016spatiotemporal fusion (TCNN)three train/test splits
    99.98 %[61]2016GA (CNN)5-fold cross-validatin
    UCF5094.4 %[60]2015MIFSLOGOCV
    94.1 %[78]2013weighted SVM5-fold LOGOCV
    94.20 %[57]2016TSN (TCNN)three train/test splits
    UCF10194.08 %[62]2016RNN-FV (C3D + VGG-CCA) + iDTthree train/test splits
    93.5 %[56]2016spatiotemporal fusion (TCNN)three train/test splits
    80.8 %[55]2016VLAD$^3$ + iDT (CNN)5-fold cross-validation
    76.8 %[55]2016VLAD$^3$ (CNN)5-fold cross-validation
    THUMOS'1574.6 %[66]2015VLAD + LCD (VGG-16)5-fold cross-validation
    70.0 %[79]2015Stream Fusion + Linear SVM (VGG-19)Tr: UCF101 dataset; Te: val15
    65.5 %[80]2015iDT + LCD + VLAD (VGG-16)Tr: UCF101 dataset; Vs: val15
    Te: UCF101 dataset + val15
    75.9 %[67]2016RLSTM-g3 (GoogLeNet)not mentioned
    Sports-1M73.4 %[67]2016RLSTM-g1 (GoogLeNet)not mentioned
    (Hit$@$1)73.10 %[81]2015LSTM on Raw Frames LSTM on Optical Flow
    (GoogLeNet)
    1.1 million videos
    *LOVOCV: leave-one-video-out cross validation; LOGOCV: leave-one-group-out cross validation; Vs: validation set
    下载: 导出CSV

    表  3  多视角数据集的最新研究成果概览表

    Table  3  Summary of state-of-the-art research results on multi-view datasets

    数据集名称最新识别率年份研究方法评价方案备注
    IXMAS91.6 %[72]2015epipolar geometrynot mentioned5种行为
    (单视角)92.7 %[73]2016multi-view transition HMMLOSOCV11种行为
    IXMAS95.54 %[75]2014MMM-SVMTr: one camera's data11种行为; 5个视角
    (多视角)95.3 %[74]2016Cuboid + supervised dictionary learningLOAOCV; CV11种行为; 5个视角
    95.1 %[74]2016STIP + supervised dictionary learningLOAOCV; CV11种行为; 5个视角
    95.54 %[75]2014MMM-SVMTr: one camera's data11种行为; 4个视角
    Ts: LOSOCV
    94.7 %[40]2017HC-MTL + L/S RegLOSOCV11种行为; 4个视角
    93.7 %[92]2017eLR ConvNet(TCNN)LOSOCV12种行为; 5个视角
    85.8 %[46]2016SDEG + $\Re$ transformLOOCV13种行为; 5个视角
    MuHAVi97.48 %[83]2012Visual + Correlation (LKSSVM)LOOCV4个视角
    92.1 %[82]2014sectorial extreme points (HMM)LOSOCV4个视角
    91.6 %[84]2016CMS + multilayer descriptor (Multiclass K-NN)LOOCV8个视角
    MuHAVi-1498.53 %[86]2014Pose dictionary learning + maxpoolingLOOCV
    98.5 %[85]2013radial summary feature + Feature Subsetleave-one-sequence-out
    Selection
    95.6 %[84]2016CMS + multilayer descriptor(Multiclass K-NN)LOOCV
    94.12 %[88]2014CMS (K-NN)multi-training
    MuHAVi-8100 %[84]2016CMS + multilayer descriptor (Multiclass K-NN)LOOCV
    100 %[88]2014CMS (K-NN)multi-training
    100 %[87]2014radial silhouette-based feature (multiview learing)leave-one-sequence-out
    100 %[85]2013radial summary feature + Feature Subsetleave-one-sequence-out
    SelectionLOSOCV
    *CV: cross-view
    下载: 导出CSV

    表  4  MSR Action 3D数据集的子集

    Table  4  The subsets of MSR Action 3D dataset

    数据子集包含行为类别
    AS$_{1}$a02、a03、a05、a06、a10、a13、a18、a20
    AS$_{2}$a01、a04、a07、a08、a09、a11、a14、a12
    AS$_{3}$a06、a14、a15、a16、a17、a18、a19、a20
    下载: 导出CSV

    表  5  特殊数据集的最新研究成果概览表

    Table  5  Summary of state-of-the-art research results on special datasets

    数据集名称最新识别率年份研究方法评价方案备注
    WARD99.02 %[100]2015PCA+RLDA (SVM)CS: Tr: 15; Te: 5
    98.78 %[99]2012GDA+RVM+WLOGP3-fold cross-validation
    97.5 %[122]2017FDA (SVM)20-fold cross-validation10种行为
    近100 %[101]2016SCN (1-NN)CS5种行为
    200个样本
    CMU Mocap98.27 %[123]2010HGPLVM3-fold cross-validation5种行为
    98.13 %[124]20143D joint position features+Actionletnot mentioned5种行为
    Ensemble
    98.6 %[102]2015DisCoSet (SVM)All12种行为
    164个样本
    99.6 %[103]2014TSVQ (Pose-Histogram SVM)5-fold cross-validation30种行为
    278个样本
    MSR Action 3D100 %[108]2015DMM-LBP-FF/DMM-LBP-DFTr: 2/3; Te: 1/3
    (AS$_1$、AS$_2$和AS$_3$)98.9 %[107]2013DL-GSGCTr: 2/3; Te: 1/3
    98.9 %[107]2013DL-GSGCTr: 1/3; Te: 2/3
    98.7 %[108]2015DMM-LBP-FFTr: 1/3; Te: 2/3
    96.7 %[107]2013DL-GSGCCS
    96.1 %[125]20163D skeleton+two-level hierarchicalCS
    framework
    96.0 %[111]2017Coarse DS+Sparse coding (RDF)CS
    MSR Action 3D100 %[110]2015HDMM+3ConvNetsTr:奇数; Te:偶数
    (cross-subject)98.2 %[109]2015TriViews+ PFATr:奇数; Te:偶数
    98.2 %[126]2015Decision-Level Fusion (SUM Rule)Tr: 2/3/5/7/9;
    Te: 1/4/6/8/10
    96.7 %[107]2013DL-GSGC+TPMTr:奇数; Te:偶数
    MSR Daily Activity 3D97.5 %[111]2017Coarse DS+Sparse coding (RDF)not mentioned
    97.5 %[112]2016DSSCA+SSLMCS
    95.0 %[107]2013DL-GSGC+TPMCS
    UCF Kinect98.9 %[114]2014MvMF-HMM+$L_2$-normalization4-fold cross-validation
    98.8 %[113]2017SGS(p$_{\rm mean}$/p$_{\max}$, skeleton-view-dep.)4-fold cross-validation
    98.7 %[127]2013motion-based grouping+adaptive2-fold cross-validation
    N-UCLA92.61 %[115]2017Synthesized+Pre-trained (CNN)CV
    Multiview Action 3D90.8 %[113]2017SGS(p$_{\max}$, skel.-view-inv.+keypoint)CV
    89.57 %[115]2017Synthesized Samples (CNN)CV
    81.6 %[104]2014MST-AOGCS; LOOCV
    79.3 %[104]2014MST-AOGcross-environment
    UTD-MHAD88.4 %[117]2015DMMs+CT-HOG+LBP+EOHCS
    88.1 %[116]2017JDM+MSF (CNN)CS
    87.9 %[118]2016JTM+MSF (CNN)CS
    NTU RGB+D76.32 %[118]2016JTM+MSF (CNN)CS
    76.2 %[116]2017JDM+MSF (CNN)CS
    62.93 %[106]20162layer P-LSTMCS
    82.3 %[116]2017JDM+MSF (CNN)CV
    81.08 %[118]2016JTM+MSF (CNN)CV
    70.27 %[106]20162 layer P-LSTMCV
    下载: 导出CSV

    表  6  通用、真实场景及多视角数据集信息表

    Table  6  The information of general datasets, real scene datasets and multi-view datasets

    类型 数据集名称 年份 行为类别 行为人数 视频数/类 视频总数/样本数 场景 视角 分辨率(最高) fps
    通用 KTH[19] 2004 6 25 99 $\sim$ 100 599/2 391 4 1 160$\times$120 25
    Weizmann[2] 2005 10 9 9 $\sim$ 10 93 1 1 180$\times$144 25
    真实场景 Hollywood[27] 2008 8 N/A 30 $\sim$ 129 475 N/A N/A 544$\times$240 25
    UCF Sports[28] 2008 10 N/A 6 $\sim$ 22 150 N/A N/A 720$\times$480 9
    UT-Tower[128] 2009 9 6 12 108 2 1 360$\times$240 10
    Hollywood 2[29] (Actions) 2009 12 N/A 61 $\sim$ 278 2 517 N/A N/A 720$\times$528 25
    ADL[129] 2009 10 5 15 150 1 1 1 280$\times$720 30
    UCF YouTube[30] 2009 11 N/A 116 $\sim$ 198 1 600 N/A N/A 320$\times$240 30
    Olympic Sports[31] 2010 16 N/A 21 $\sim$ 67 783 N/A N/A - -
    UT-Interaction[130] 2010 6 N/A 20 120 2 1 720$\times$480 30
    HMDB51[32] 2011 51 N/A 102 $\sim$ 548 6 766 N/A N/A 424$\times$240 30
    CCV[131] 2011 20 N/A 224 $\sim$ 806 9 317 N/A N/A - -
    UCF50[33] 2012 50 N/A 100 $\sim$ 197 6 681 N/A N/A 320$\times$240 25
    UCF101[34] 2012 101 N/A 100 $\sim$ 167 13 320 N/A N/A 320$\times$240 25
    MPII Cooking[132] 2012 65 12 - 44/5 609 1 1 1 624$\times$1 224 29.4
    MPII Composites[133] 2012 60 22 - 212 1 1 1 624$\times$1 224 29.4
    Sports-1M[35] 2014 487 N/A 1 000 $\sim$ 3 000 1 133 158 N/A N/A 1 280$\times$720 30
    Hollywood Extended[134] 2014 16 N/A 2 $\sim$ 11 937 N/A N/A 720$\times$528 25
    MPII Cooking 2[135] 2015 67 30 - 273/14 105 1 1 1 624$\times$1 224 29.4
    ActivityNet[136] 2015 203 N/A 137(a) 27 801 N/A N/A 1 280$\times$720 30
    多视角 IXMAS[68] 2006 13 12 180 180/2 340 1 5 390$\times$291 23
    i3DPost[137] 2009 12 8 64 768 1 8 1 920$\times$1 080 25
    MuHAVi[69] 2010 17 7 56 952 1 8 720$\times$576 25
    MuHAVi-MAS[69] 2010 14 2 4 $\sim$ 16 136 1 2 720$\times$576 25
    *a: average; N/A: not applicable
    下载: 导出CSV

    表  7  特殊数据集信息表

    Table  7  The information of special human activity recognition datasets

    数据集名称 年份 行为类别 行为人数 视频数/类 视频总数/样本数 场景 视角 分辨率 fps 数据格式 骨架关节点
    CMU Mocap[94] 2007 23个亚类 N/A 1 $\sim$ 96 2 605 N/A N/A 320 $\times$ 240 30 MS 41
    WARD[93] 2009 13 20 64 $\sim$ 66 1 298 1 1 - - M N/A
    CMU-MMAC[138] 2009 5大类 45 234 $\sim$ 252 1 218 1 6 1 024$\times$768 30 RDMA N/A
    640$\times$480 60
    MSR Action 3D[95] 2010 20 10 20 $\sim$ 30 567 1 1 640$\times$480 (R)
    320$\times$240 (D)
    15 DS 20
    RGBD-HuDaAct[139] 2011 12 30 - 1 189 1 1 640$\times$480 (RD) 30 RD N/A
    UT Kinect[140] 2012 10 10 - 200 1 1 640$\times$480 (R)
    320$\times$240 (D)
    30 RDS 20
    ACT4$^2$[141] 2012 14 24 - 6 844 1 4 640 $\times$ 480 30 RD N/A
    MSR Daily Activity 3D[96] 2012 16 10 20 320 1 1 640$\times$480 30 RDS 20
    UCF Kinect[97] 2013 16 16 80 1 280 1 1 - - S 15
    Berkeley MHAD[142] 2013 11 12 54 $\sim$ 55 659 1 4 640$\times$480 30 RDMAIe N/A
    3D Action Pairs[143] 2013 12 10 30 360 1 1 640$\times$480 30 RDS 20
    Multiview RGB-D event[144] 2013 8 8 477 (a) 3 815 1 3 640$\times$480 30 RDS 20
    Online RGBD Action[145] 2014 7 24 48 336 1 1 - - RDS 20
    URFD[119] 2014 5 5 6 $\sim$ 60 100 4 2 640$\times$240 30 RD N/A
    N-UCLA[104] 2014 10 10 140 $\sim$ 173 1 475 1 3 640$\times$480 12 RDS 20
    TST Fall detection v1[120] 2014 2 4 10 20 1 1 320$\times$240 (D) 30 D N/A
    UTD-MHAD[105] 2015 27 8 31 $\sim$ 32 861 1 1 640$\times$480 30 RDSIe 25
    TST Fall detection v2[121] 2016 8 11 33 264 1 1 512$\times$424 (D) 25 DSIe 25
    NTU RGB+D[106] 2016 60 40 948 56 880 1 80 1 920$\times$720 (R)
    512$\times$424 (D)
    512$\times$424 (If)
    30 RDSIf 25
    *R: RGB; D: Depht; S: Skeleton; M: Motion; A: Audio; If: Infrared; Ie: Inertrial
    下载: 导出CSV

    表  8  人体行为数据集分类信息表

    Table  8  Human activity dataset classification according to different features

    分类特征 子类 数据集
    场景 室内 ADL、MPII Cooking、MPII Composites、MPII Cooking 2、IXMAS、i3DPost、MuHAVi、MuHAVi-MAS、CMU Mocap、WARD、CMU-MMAC、MSR Action 3D、RGBD-HuDaAct、UT Kinect、ACT4$^2$、MSR Daily Activity 3D、UCF Kinect、MHAD、3D Action Pairs、Multiview RGB-D event、Online RGBD Action、URFD、N- UCLA Multiview Action 3D、TST Fall detection dataset v1、UTD-MHAD、TST Fall detection dataset v2、NTU RGB+D
    室外 Weizmann、UT-Tower、UT-Interaction、PETS
    内容 室内/室外 KTH、Hollywood、UCF Sports、Hollywood 2、UCF YouTube、Olympic Sports、HMDB51、CCV、UCF50、UCF101、Sports-1M、Hollywood Extended、ActivityNet、THUMOS
    日常活动 KTH、Weizmann、ADL、HMDB51、CCV、ActivityNet、IXMAS、i3DPost、MuHAVi、MuHAVi-MAS、CMU Mocap、WARD、MSR Action 3D、RGBD-HuDaAct、UT Kinect、ACT4$^2$、MSR Daily Activity 3D、RGBD- HuDaAct、UCF Kinect、MHAD、3D Action Pairs、Multiview RGB-D event、Online RGBD Action、URFD、N-UCLA Multiview Action 3D、TST Fall detection dataset v1、UTD-MHAD、TST Fall detection dataset v2、NTU RGB+D
    体育运动 UCF Sports、UCF YouTube、Olympic Sports、UCF50、UCF101、Sports-1M、THUMOS
    厨房活动 MPII Cooking、MPII Composites、MPII Cooking 2、CMU-MMAC
    电影 Hollywood、Hollywood 2、Hollywood Extended
    监控 UT-Tower、UT-Interaction、PETS
    视角 单视角 KTH、Weizmann、ADL、MPII Cooking、MPII Composites、MPII Cooking 2、MSR Action 3D、UT Kinect、MSR Daily Activity 3D、RGBD-HuDaAct、UCF Kinect、3D Action Pairs、Online RGBD Action、TST Fall detection dataset v1、UTD-MHAD、TST Fall detection dataset v2
    多视角 IXMAS、i3DPost、MuHAVi、MuHAVi-MAS、ACT4$^2$、MHAD、Multiview RGB-D event、URFD、N-UCLA Multiview Action 3D、NTU RGB+D、PETS
    俯瞰 UT-Tower、UT-Interaction、PETS
    其他 Hollywood、UCF Sports、Hollywood 2、UCF YouTube、Olympic Sports、HMDB51、CCV、UCF50、UCF101、Sports-1M、Hollywood Extended、ActivityNet、CMU Mocap、WARD、CMU-MMAC、THUMOS
    相机 静止 KTH、Weizmann、UT-Tower、ADL、UT-Interaction、MPII Cooking、MPII Composites、MPII Cooking 2、IXMAS、i3DPost、MuHAVi、MuHAVi-MAS、CMU-MMAC、MSR Action 3D、RGBD-HuDaAct、UT Kinect、ACT4$^2$、MSR Daily Activity 3D、UCF Kinect、MHAD、3D Action Pairs、Multiview RGB-D event、Online RGBD Action、URFD、N-UCLA Multiview Action 3D、TST Fall detection dataset v1、UTD-MHAD、TST Fall detection dataset v2、NTU RGB+D、PETS
    移动 Hollywood、UCF Sports、Hollywood 2、UCF YouTube、Olympic Sports、HMDB51、CCV、UCF50、UCF101、Sports-1M、Hollywood Extended、ActivityNet、CMU Mocap、THUMOS
    应用 行为识别 KTH、Weizmann、Hollywood、UCF Sports、UT-Tower、Hollywood 2、ADL、UCF YouTube、Olympic Sports、UT-Interaction、HMDB51、CCV、UCF50、UCF101、MPII Cooking、MPII Composites、Sports-1M、Hollywood Extended、ActivityNet、MPII Cooking 2、IXMAS、i3DPost、MuHAVi、MuHAVi-MAS、CMU Mocap、WARD、CMU-MMAC、MSR Action 3D、RGBD-HuDaAct、UT Kinect、ACT4$^2$、MSR Daily Activity 3D、UCF Kinect、MHAD、3D Action Pairs、Multiview RGB-D event、Online RGBD Action、N-UCLA Multiview Action 3D、UTD-MHAD、TST Fall detection dataset v2、NTU RGB+D、PETS、THUMOS
    领域 检测/跟踪 KTH、Weizmann、UCF Sports、Olympic Sports、UT-Interaction、ADL、UCF YouTube、ACT4$^2$、URFD、TST Fall detection dataset v1、TST Fall detection dataset v2、PETS、UCF50、UCF101、MPII Cooking、MPII Composites、MPII Cooking 2
    其他 KTH、Weizmann、UCF YouTube、UT-Tower、UCF50、ActivityNet、MPII Cooking、MPII Composites、MPII Cooking 2、Multiview RGB-D event
    下载: 导出CSV
  • [1] Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2004, 34(3):334-352 doi: 10.1109/TSMCC.2004.829274
    [2] Kim I S, Choi H S, Yi K M, Choi J Y, Kong S G. Intelligent visual surveillance-a survey. International Journal of Control, Automation and Systems, 2010, 8(5):926-939 doi: 10.1007/s12555-010-0501-4
    [3] 黄凯奇, 陈晓棠, 康运锋, 谭铁牛.智能视频监控技术综述.计算机学报, 2015, 38(6):1093-1118 doi: 10.11897/SP.J.1016.2015.01093

    Huang Kai-Qi, Chen Xiao-Tang, Kang Yun-Feng, Tan Tie-Niu. Intelligent visual surveillance:a review. Chinese Journal of Computers, 2015, 38(6):1093-1118 doi: 10.11897/SP.J.1016.2015.01093
    [4] Dix A. Human-Computer Interaction. Berlin: Springer-Verlag, 2009. 1327-1331
    [5] Myers B A. A brief history of human-computer interaction technology. Interactions, 1998, 5(2):44-54 doi: 10.1145/274430.274436
    [6] Rautaray S S, Agrawal A. Vision based hand gesture recognition for human computer interaction:a survey. Artificial Intelligence Review, 2015, 43(1):1-54 doi: 10.1007/s10462-012-9356-9
    [7] Park S H, Won S H, Lee J B, Kim S W. Smart home-digitally engineered domestic life. Personal and Ubiquitous Computing, 2003, 7(3-4):189-196 doi: 10.1007/s00779-003-0228-9
    [8] Jeong K-A, Salvendy G, Proctor R W. Smart home design and operation preferences of Americans and Koreans. Ergonomics, 2010, 53(5):636-660 doi: 10.1080/00140130903581623
    [9] Komninos N, Philippou E, Pitsillides A. Survey in smart grid and smart home security:Issues, challenges and countermeasures. IEEE Communications Surveys & Tutorials, 2014, 16(4):1933-1954 http://cn.bing.com/academic/profile?id=ba89261b5387cd451572bd2fd6012175&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Suma E A, Krum D M, Lange B, Koenig S, Rizzo A, Bolas M. Adapting user interfaces for gestural interaction with the flexible action and articulated skeleton toolkit. Computers & Graphics, 2013, 37(3):193-201
    [11] Zelnik-Manor L, Irani M. Event-based analysis of video. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Kauai, Hawaii, USA: IEEE, 2001, 2: Ⅱ-123-Ⅱ-130 doi: 10.1109/CVPR.2001.990935
    [12] Ahad M A R, Tan J, Kim H, Ishikawa S. Action dataset-a survey. In: Proceedings of the 2011 SICE Annual Conference (SICE). Tokyo, Japan: IEEE, 2011. 1650-1655 http://www.mendeley.com/catalog/action-dataset-survey/
    [13] Chaquet J M, Carmona E J, Fernández-Caballero A. A survey of video datasets for human action and activity recognition. Computer Vision and Image Understanding, 2013, 117(6):633-659 doi: 10.1016/j.cviu.2013.01.013
    [14] Zhang J, Li W Q, Ogunbona P O, Wang P C, Tang C. RGB-D-based action recognition datasets:a survey. Pattern Recognition, 2016, 60:86-105 doi: 10.1016/j.patcog.2016.05.019
    [15] Aggarwal J K, Ryoo M S. Human activity analysis:a review. ACM Computing Surveys, 2011, 43(3):Article No. 16 http://cn.bing.com/academic/profile?id=a25e9bf81e9f05da7e7a0358aaeb8ae3&encoded=0&v=paper_preview&mkt=zh-cn
    [16] Vishwakarma S, Agrawal A. A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer, 2013, 29(10):983-1009 doi: 10.1007/s00371-012-0752-6
    [17] Chen C, Jafari R, Kehtarnavaz N. A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 2017, 76(3):4405-4425 doi: 10.1007/s11042-015-3177-1
    [18] 单言虎, 张彰, 黄凯奇.人的视觉行为识别研究回顾、现状及展望.计算机研究与发展, 2016, 53(1):93-112 doi: 10.7544/issn1000-1239.2016.20150403

    Shan Yan-Hu, Zhang Zhang, Huang Kai-Qi. Visual human action recognition:history, status and prospects. Journal of Computer Research and Development, 2016, 53(1):93-112 doi: 10.7544/issn1000-1239.2016.20150403
    [19] Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR). Cambridge, UK: IEEE, 2004, 3: 32-36 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1334462
    [20] Blank M, Gorelick L, Shechtman E, Irani M, Basri R. Actions as space-time shapes. In: Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). Beijing, China: IEEE, 2005, 2: 1395-1402 http://europepmc.org/abstract/MED/17934233
    [21] Gorelick L, Blank M, Shechtman E, Irani M, Basri R. Actions as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12):2247-2253 doi: 10.1109/TPAMI.2007.70711
    [22] Zhou T C, Li N J, Cheng X, Xu Q J, Zhou L, Wu Z Y. Learning semantic context feature-tree for action recognition via nearest neighbor fusion. Neurocomputing, 2016, 201:1-11 doi: 10.1016/j.neucom.2016.04.007
    [23] Xu W R, Miao Z J, Tian Y. A novel mid-level distinctive feature learning for action recognition via diffusion map. Neurocomputing, 2016, 218:185-196 doi: 10.1016/j.neucom.2016.08.057
    [24] Gorelick L, Blank M, Shechtman E, Irani M, Basri R. Actions as space-time shapes[Online], available: http://www.wisdom.weizmann.ac.il/~vision/SpaceTime-Actions.html, January 26, 2016.
    [25] Tran D, Sorokin A. Human activity recognition with metric learning. In: Proceedings of the 10th European Conference on Computer Vision (ECCV). Marseille, France: Springer, 2008. 548-561 http://www.springerlink.com/content/p2183333585g8845
    [26] Fathi A, Mori G. Action recognition by learning mid-level motion features. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4587735
    [27] Laptev I, Marszalek M, Schmid C, Rozenfeld B. Learning realistic human actions from movies. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587756
    [28] Rodriguez M D, Ahmed J, Shah M. Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587727
    [29] Marszalek M, Laptev I, Schmid C. Actions in context. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA: IEEE, 2009. 2929-2936
    [30] Liu J G, Luo J B, Shah M. Recognizing realistic actions from videos "in the wild". In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA: IEEE, 2009. 1996-2003 doi: 10.1109/CVPRW.2009.5206744
    [31] Niebles J C, Chen C W, Li F F. Modeling temporal structure of decomposable motion segments for activity classification. In: Proceedings of the 11th European Conference on Computer Vision (ECCV): Part Ⅱ. Heraklion, Crete, Greece: Springer, 2010. 392-405
    [32] Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. HMDB: a large video database for human motion recognition. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011. 2556-2563 doi: 10.1109/ICCV.2011.6126543
    [33] Reddy K K, Shah M. Recognizing 50 human action categories of web videos. Machine Vision and Applications, 2013, 24(5):971-981 doi: 10.1007/s00138-012-0450-4
    [34] Soomro K, Zamir A R, Shah M. UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv: 1212. 0402, 2012. 1-7
    [35] Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Li F F. Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 1725-1732 http://ieeexplore.ieee.org/document/6909619/
    [36] Kulkarni K, Evangelidis G, Cech J, Horaud R. Continuous action recognition based on sequence alignment. International Journal of Computer Vision, 2015, 112(1):90-114 doi: 10.1007/s11263-014-0758-9
    [37] Shabani A H, Clausi D A, Zelek J S. Evaluation of local spatio-temporal salient feature detectors for human action recognition. In: Proceedings of the 2012 Ninth Conference on Computer and Robot Vision (CRV). Toronto, ON, Canada: IEEE, 2012. 468-475 http://dl.acm.org/citation.cfm?id=2354394
    [38] Fernando B, Anderson P, Hutter M, Gould S. Discriminative hierarchical rank pooling for activity recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1924-1932 doi: 10.1109/CVPR.2016.212
    [39] Wang H, Schmid C. Action recognition with improved trajectories. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, Australia: IEEE, 2013. 3551-3558 doi: 10.1109/ICCV.2013.441
    [40] Liu A A, Su Y T, Nie W Z, Kankanhalli M. Hierarchical clustering multi-task learning for joint human action grouping and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1):102-114 doi: 10.1109/TPAMI.2016.2537337
    [41] Wang Y, Tran V, Hoai M. Evolution-preserving dense trajectory descriptors. arXiv: 1702. 04037, 2017.
    [42] Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. Advance in Neural Information Processing Systems. 2014, 1(4):568-576 https://www.researchgate.net/publication/262974436_Two-Stream_Convolutional_Networks_for_Action_Recognition_in_Videos
    [43] Al Harbi N, Gotoh Y. A unified spatio-temporal human body region tracking approach to action recognition. Neurocomputing, 2015, 161:56-64 doi: 10.1016/j.neucom.2014.11.072
    [44] Tong M, Wang H Y, Tian W J, Yang S L. Action recognition new framework with robust 3D-TCCHOGAC and 3D-HOOFGAC. Multimedia Tools and Applications, 2017, 76(2):3011-3030 doi: 10.1007/s11042-016-3279-4
    [45] Vishwakarma D K, Kapoor R, Dhiman A. Unified framework for human activity recognition:an approach using spatial edge distribution and R-transform. AEU-International Journal of Electronics and Communications, 2016, 70(3):341-353 doi: 10.1016/j.aeue.2015.12.016
    [46] Vishwakarma D K, Kapoor R, Dhiman A. A proposed unified framework for the recognition of human activity by exploiting the characteristics of action dynamics. Robotics and Autonomous Systems, 2016, 77:25-38 doi: 10.1016/j.robot.2015.11.013
    [47] Liu C W, Pei M T, Wu X X, Kong Y, Jia Y D. Learning a discriminative mid-level feature for action recognition. Science China Information Sciences, 2014, 57(5):1-13 http://cn.bing.com/academic/profile?id=cb77c2bcda90b6c26f8a2e19405b6342&encoded=0&v=paper_preview&mkt=zh-cn
    [48] Laptev I, Marszalek M, Schmid C, Rozenfeld B. Hollywood2: Human actions and scenes dataset[Online], available: http://www.di.ens.fr/~laptev/actions/hollywood2/, March 12, 2016.
    [49] Wang H, Kläser A, Schmid C, Liu C L. Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision, 2013, 103(1):60-79 doi: 10.1007/s11263-012-0594-8
    [50] Soomro K, Zamir A R. Action recognition in realistic sports videos. Computer vision in sports. Cham, Switzerland: Springer, 2014. 181-208
    [51] Peng X J, Zou C Q, Qiao Y, Peng Q. Action recognition with stacked fisher vectors. In: Proceedings of the 13th European Conference on Computer Vision (ECCV). Zurich, Switzerland: Springer, 2014. 581-595 doi: 10.1007/978-3-319-10602-1_38
    [52] Liu C H, Liu J, He Z C, Zhai Y J, Hu Q H, Huang Y L. Convolutional neural random fields for action recognition. Pattern Recognition, 2016, 59:213-224 doi: 10.1016/j.patcog.2016.03.019
    [53] Sun Q R, Liu H, Ma L Q, Zhang T W. A novel hierarchical bag-of-words model for compact action representation. Neurocomputing, 2016, 174(Part B):722-732 https://www.researchgate.net/publication/283989611_A_novel_hierarchical_Bag-of-Words_model_for_compact_action_representation
    [54] Sekma M, Mejdoub M, Amar C B. Human action recognition based on multi-layer fisher vector encoding method. Pattern Recognition Letters, 2015, 65(C):37-43 https://www.researchgate.net/publication/305284646_Structured_Fisher_vector_encoding_method_for_human_action_recognition
    [55] Li Y W, Li W X, Mahadevan V, Vasconcelos N. VLAD3: encoding dynamics of deep features for action recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1951-1960 doi: 10.1109/CVPR.2016.215
    [56] Feichtenhofer C, Pinz A, Zisserman A. Convolutional two-stream network fusion for video action recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1933-1941 http://arxiv.org/abs/1604.06573
    [57] Wang L M, Xiong Y J, Wang Z, Qiao Y, Lin D H, Tang X O, Van Gool L. Temporal segment networks: Towards good practices for deep action recognition. In: Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam, the Netherlands: Springer, 2016. 20-36 doi: 10.1007/978-3-319-46484-8_2
    [58] Wang H S, Wang W, Wang L. How scenes imply actions in realistic videos? In: Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ, USA: IEEE, 2016. 1619-1623 http://ieeexplore.ieee.org/document/7532632/
    [59] Wang L M, Guo S, Huang W L, Qiao Y. Places205-VGGNet models for scene recognition. arXiv: 1508. 01667, 2015.
    [60] Lan Z Z, Lin M, Li X C, Hauptmann A G, Raj B. Beyond Gaussian pyramid: multi-skip feature stacking for action recognition. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 204-212 doi: 10.1109/CVPR.2015.7298616
    [61] Ijjina E P, Chalavadi K M. Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognition, 2016, 59:199-212 doi: 10.1016/j.patcog.2016.01.012
    [62] Lev G, Sadeh G, Klein B, Wolf L. RNN Fisher vectors for action recognition and image annotation. In: Proceedings of the 14th European Conference on Computer Vision (ECCV): Part Ⅷ . Amsterdam, the Netherlands: Springer, 2016. 833-850
    [63] Jiang Y G, Liu J G, Zamir A R, Laptev I, Piccardi M, Shah M, Sukthankar R. THUMOS challenge: Action recognition with a large number of classes[Online], available: http://crcv.ucf.edu/ICCV13-Action-Workshop/index.html, November 20, 2016.
    [64] Jiang Y G, Liu J G, Zamir A R, Toderici G, Laptev I, Shah M, Sukthankar R. THUMOS challenge: action recognition with a large number of classes[Online], available: http://crcv.ucf.edu/THUMOS14/home.html, November 20, 2016.
    [65] Gorban A, Idrees H, Jiang Y G, Zamir A R, Laptev I, Shah M, Sukthankar R. THUMOS challenge: action recognition with a large number of classes[Online], available: http://www.thumos.info/home.html, November 20, 2016.
    [66] Xu Z, Zhu L, Yang Y, Hauptmann A G. UTS-CMU at THUMOS 2015. In: Proceedings of the 2015 THUMOS Challenge. Boston, MA, USA: CVPR, 2015. 1-3
    [67] Mahasseni B, Todorovic S. Regularizing long short term memory with 3D human-skeleton sequences for action recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 3054-3062 doi: 10.1109/CVPR.2016.333
    [68] Weinland D, Ronfard R, Boyer E. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 2006, 104(2-3):249-257 doi: 10.1016/j.cviu.2006.07.013
    [69] Singh S, Velastin S A, Ragheb H. MuHAVi: a multicamera human action video dataset for the evaluation of action recognition methods. In: Proceedings of the 7th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Boston, MA, USA: IEEE, 2010. 48-55 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5597316
    [70] Ferryman J, Shahrokni A. PETS2009: dataset and challenge. In: Proceedings of the 22th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter). Snowbird, UT, USA: IEEE, 2009. 1-6 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5399556
    [71] Patino L, Ferryman J. PETS 2014: dataset and challenge. In: Proceedings of the 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Seoul, South Korea: IEEE, 2014. 355-360 doi: 10.1109/AVSS.2014.6918694
    [72] Ashraf N, Foroosh H. Motion retrieval using consistency of epipolar geometry. In: Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP). Quebec City, QC, Canada: IEEE, 2015. 4219-4223 http://ieeexplore.ieee.org/document/7351601/
    [73] Ji X F, Ju Z J, Wang C, Wang C H. Multi-view transition HMMs based view-invariant human action recognition method. Multimedia Tools and Applications, 2016, 75(19):11847-11864 doi: 10.1007/s11042-015-2661-y
    [74] Gao Z, Nie W Z, Liu A N, Zhang H. Evaluation of local spatial-temporal features for cross-view action recognition. Neurocomputing, 2016, 173(Part 1):110-117 http://cn.bing.com/academic/profile?id=1da561fc4b0fcb38d7c20fb3f7e53e43&encoded=0&v=paper_preview&mkt=zh-cn
    [75] Wu D, Shao L. Multi-max-margin support vector machine for multi-source human action recognition. Neurocomputing, 2014, 127(3):98-103 http://cn.bing.com/academic/profile?id=1985a105fc3d9604d66066b167adf376&encoded=0&v=paper_preview&mkt=zh-cn
    [76] Yi Y, Lin M Q. Human action recognition with graph-based multiple-instance learning. Pattern Recognition, 2016, 53(C):148-162 http://cn.bing.com/academic/profile?id=d6d8420d7e0ac3354d4a04a9cb76c2dd&encoded=0&v=paper_preview&mkt=zh-cn
    [77] Jung H J, Hong K S. Modeling temporal structure of complex actions using bag-of-sequencelets. Pattern Recognition Letters, 2017, 85:21-28 doi: 10.1016/j.patrec.2016.11.012
    [78] Ballas N, Yang Y, Lan Z Z, Delezoide B, Preteux F, Hauptmann A. Space-time robust representation for action recognition. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 2704-2711 doi: 10.1109/ICCV.2013.336
    [79] Qiu Z F, Li Q, Yao T, Mei T, Rui Y. MSR Asia MSM at THUMOS challenge 2015. In: Proceedings of the 2015 THUMOS Challenge. Boston, MA, USA: CVPR, 2015. 1-3 http://storage.googleapis.com/www.thumos.info/thumos15_notebooks/TH15_MSRAsia.pdf
    [80] Ning K, Wu F. ZJUDCD submission at THUMOS challenge 2015. In: Proceedings of the 2015 THUMOS Challenge. Boston, MA, USA: CVPR, 2015. 1-2
    [81] Ng J Y H, Hausknecht M, Vijayanarasimhan S, Vinyals O, Monga R, Toderici G. Beyond short snippets: deep networks for video classification. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 4694-4702 doi: 10.1109/CVPR.2015.7299101
    [82] Moghaddam Z, Piccardi M. Training initialization of Hidden Markov Models in human action recognition. IEEE Transactions on Automation Science and Engineering, 2014, 11(2):394-408 doi: 10.1109/TASE.2013.2262940
    [83] Wu X X, Jia Y D. View-invariant action recognition using latent kernelized structural SVM. In: Proceedings of the 12th European Conference on Computer Vision (ECCV). Florence, Italy: Springer, 2012. 411-424 http://dl.acm.org/citation.cfm?id=2403170
    [84] Alcantara M F, Moreira T P, Pedrini H. Real-time action recognition using a multilayer descriptor with variable size. Journal of Electronic Imaging, 2016, 25(1):Article No., 013020 https://www.researchgate.net/profile/Marlon_Alcantara3/publication/293042223_Real-time_action_recognition_using_a_multilayer_descriptor_with_variable_size/links/5760567508ae2b8d20eb5f9e.pdf?origin=publication_list
    [85] Chaaraoui A A, Flórez-Revuelta F. Human action recognition optimization based on evolutionary feature subset selection. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation. Amsterdam, the Netherlands: ACM, 2013. 1229-1236 Human action recognition optimization based on evolutionary feature subset selection
    [86] Cai J X, Tang X, Feng G C. Learning pose dictionary for human action recognition. In: Proceedings of the 22nd International Conference on Pattern Recognition (ICPR). Stockholm, Sweden: IEEE, 2014. 381-386 http://dl.acm.org/citation.cfm?id=2704008
    [87] Chaaraoui A A, Flórez-Revuelta F. A low-dimensional radial silhouette-based feature for fast human action recognition fusing multiple views. International Scholarly Research Notices, 2014, 2014:Article No., 547069 https://www.hindawi.com/journals/isrn/2014/547069/tab1/
    [88] Alcantara M F, Moreira T P, Pedrini H. Real-time action recognition based on cumulative motion shapes. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence, Italy: IEEE, 2014. 2917-2921 http://ieeexplore.ieee.org/document/6854134/
    [89] Li L Z, Nawaz T, Ferryman J. PETS 2015: datasets and challenge. In: Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Karlsruhe, Germany: IEEE, 2015. 1-6 doi: 10.1109/AVSS.2015.7301741
    [90] Patino L, Cane T, Vallee A, Ferryman J. PETS 2016: dataset and challenge. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, NV, USA: IEEE, 2016. 1240-1247 http://ieeexplore.ieee.org/document/7789647/
    [91] PETS 2014[Online], available: http://www.cvg.reading.ac.uk/PETS2014/, April 16, 2016
    [92] Chen J W, Wu J, Konrad J, Ishwar P. Semi-coupled two-stream fusion ConvNets for action recognition at extremely low resolutions. In: Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, California, USA: IEEE, 2017. 139-147 http://ieeexplore.ieee.org/document/7926606/
    [93] Yang A Y, Jafari R, Sastry S S, Bajcsy R. Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 2009, 1(2):103-115 http://dl.acm.org/citation.cfm?id=2350317
    [94] CMU graphics lab motion capture database[Online], available: http://mocap.cs.cmu.edu, September 27, 2016.
    [95] Li W Q, Zhang Z Y, Liu Z C. Action recognition based on a bag of 3D points. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). San Francisco, CA, USA: IEEE, 2010. 9-14 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5543273&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D5543273
    [96] Wang J, Liu Z C, Wu Y, Yuan J S. Mining actionlet ensemble for action recognition with depth cameras. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA: IEEE, 2012. 1290-1297 http://dl.acm.org/citation.cfm?id=2354966
    [97] Ellis C, Masood S Z, Tappen M F, LaViola Jr J J, Sukthankar R. Exploring the trade-off between accuracy and observational latency in action recognition. International Journal of Computer Vision, 2013, 101(3):420-436 doi: 10.1007/s11263-012-0550-7
    [98] Yang A Y, Iyengar S, Kuryloski P, Jafari R. Distributed segmentation and classification of human actions using a wearable motion sensor network. In: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'08). Anchorage, AK, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4563176
    [99] Guo Y C, He W H, Gao C. Human activity recognition by fusing multiple sensor nodes in the wearable sensor systems. Journal of Mechanics in Medicine and Biology, 2012, 12(5):Article No., 1250084 doi: 10.1142/S0219519412500844
    [100] Guo M, Wang Z L. A feature extraction method for human action recognition using body-worn inertial sensors. In: Proceedings of the 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Calabria, Italy: IEEE, 2015. 576-581 http://ieeexplore.ieee.org/document/7231022/
    [101] Jia Q, Fan X, Luo Z X, Li H J, Huyan K, Li Z Z. Cross-view action matching using a novel projective invariant on non-coplanar space-time points. Multimedia Tools and Applications, 2016, 75(19):11661-11682 doi: 10.1007/s11042-015-2704-4
    [102] Al Aghbari Z, Junejo I N. DisCoSet:discovery of contrast sets to reduce dimensionality and improve classification. International Journal of Computational Intelligence Systems, 2015, 8(6):1178-1191 http://cn.bing.com/academic/profile?id=2cd8cc36bb9e5e545b47cfafa4362aa1&encoded=0&v=paper_preview&mkt=zh-cn
    [103] Kadu H, Kuo C C J. Automatic human Mocap data classification. IEEE Transactions on Multimedia, 2014, 16(8):2191-2202 doi: 10.1109/TMM.2014.2360793
    [104] Wang J, Nie X H, Xia Y, Wu Y, Zhu S C. Cross-view action modeling, learning, and recognition. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA: IEEE, 2014. 2649-2656 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6909735
    [105] Chen C, Jafari R, Kehtarnavaz N. UTD-MHAD: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP). Quebec City, QC, Canada: IEEE, 2015. 168-172 http://ieeexplore.ieee.org/document/7350781
    [106] Shahroudy A, Liu J, Ng T T, Wang G. NTU RGB+D: a large scale dataset for 3D human activity analysis. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016. 1010-1019 http://arxiv.org/abs/1604.02808
    [107] Luo J J, Wang W, Qi H R. Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In: Proceedings of the 2013 IEEE International Conference on Computer Vision (ICCV). Sydney, NSW, Australia: IEEE, 2013. 1809-1816 doi: 10.1109/ICCV.2013.227
    [108] Chen C, Jafari R, Kehtarnavaz N. Action recognition from depth sequences using depth motion maps-based local binary patterns. In: Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA: IEEE, 2015. 1092-1099 http://dl.acm.org/citation.cfm?id=2764065.2764211
    [109] Chen W B, Guo G D. Triviews:a general framework to use 3D depth data effectively for action recognition. Journal of Visual Communication and Image Representation, 2015, 26:182-191 doi: 10.1016/j.jvcir.2014.11.008
    [110] Wang P C, Li W Q, Gao Z M, Zhang J, Tang C, Ogunbona P. Deep convolutional neural networks for action recognition using depth map sequences. arXiv: 1501. 04686, 2015. 1-8
    [111] Zhang H L, Zhong P, He J L, Xia C X. Combining depth-skeleton feature with sparse coding for action recognition. Neurocomputing, 2017, 230:417-426 doi: 10.1016/j.neucom.2016.12.041
    [112] Shahroudy A, Ng T T, Gong Y H, Wang G. Deep multimodal feature analysis for action recognition in RGB+D videos. arXiv: 160307120, 2016.
    [113] Kerola T, Inoue N, Shinoda K. Cross-view human action recognition from depth maps using spectral graph sequences. Computer Vision and Image Understanding, 2017, 154:108-126 doi: 10.1016/j.cviu.2016.10.004
    [114] Beh J, Han D K, Durasiwami R, Ko H. Hidden Markov model on a unit hypersphere space for gesture trajectory recognition. Pattern Recognition Letters, 2014, 36:144-153 doi: 10.1016/j.patrec.2013.10.007
    [115] Liu M Y, Liu H, Chen C. Enhanced skeleton visualization for view invariant human action recognition. Pattern Recognition, 2017, 68:346-362 doi: 10.1016/j.patcog.2017.02.030
    [116] Li C K, Hou Y H, Wang P C, Li W Q. Joint distance maps based action recognition with convolutional neural networks. IEEE Signal Processing Letters, 2017, 24(5):624-628 doi: 10.1109/LSP.2017.2678539
    [117] Bulbul M F, Jiang Y S, Ma J W. DMMs-based multiple features fusion for human action recognition. International Journal of Multimedia Data Engineering & Management, 2015, 6(4):23-39 http://cn.bing.com/academic/profile?id=fd27f4caf7ad1b2f08f4f1ee6391f01b&encoded=0&v=paper_preview&mkt=zh-cn
    [118] Wang P C, Li W Q, Li C K, Hou Y H. Action recognition based on joint trajectory maps with convolutional neural networks. arXiv: 1612. 09401v1, 2016. 1-11
    [119] Kwolek B, Kepski M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer Methods and Programs in Biomedicine, 2014, 117(3):489-501 doi: 10.1016/j.cmpb.2014.09.005
    [120] Gasparrini S, Cippitelli E, Spinsante S, Gambi E. A depth-based fall detection system using a kinect? sensor. Sensors, 2014, 14(2):2756-2775 doi: 10.3390/s140202756
    [121] Gasparrini S, Cippitelli E, Gambi E, Spinsante S, Wåhslén J, Orhan I, Lindh T. Proposal and experimental evaluation of fall detection solution based on wearable and depth data fusion. ICT innovations 2015. Cham, Switzerland: Springer, 2016. 99-108 doi: 10.1007/978-3-319-25733-4_11
    [122] 苏本跃, 蒋京, 汤庆丰, 盛敏.基于函数型数据分析方法的人体动态行为识别.自动化学报, 2017, 43(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19064.shtml

    Su Ben-Yue, Jiang Jing, Tang Qing-Feng, Sheng Min. Human dynamic action recognition based on functional data analysis. Acta Automatica Sinica, 2017, 43(5):866-876 http://www.aas.net.cn/CN/abstract/abstract19064.shtml
    [123] Han L, Wu X X, Liang W, Hou G M, Jia Y D. Discriminative human action recognition in the learned hierarchical manifold space. Image and Vision Computing, 2010, 28(5):836-849 doi: 10.1016/j.imavis.2009.08.003
    [124] Wang J, Liu Z C, Wu Y, Yuan J S. Learning actionlet ensemble for 3D human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5):914-927 doi: 10.1109/TPAMI.2013.198
    [125] Chen H Z, Wang G J, Xue J H, He L. A novel hierarchical framework for human action recognition. Pattern Recognition, 2016, 55:148-159 doi: 10.1016/j.patcog.2016.01.020
    [126] Zhu Y, Chen W B, Guo G D. Fusing multiple features for depth-based action recognition. ACM Transactions on Intelligent Systems and Technology, 2015, 6(2):Article No. 18 http://cn.bing.com/academic/profile?id=b8a609270431fed77692706f168340e8&encoded=0&v=paper_preview&mkt=zh-cn
    [127] Jiang X B, Zhong F, Peng Q S, Qin X Y. Robust action recognition based on a hierarchical model. In: Proceedings of the 2013 International Conference on Cyberworlds (CW). Yokohama, Japan: IEEE, 2013. 191-198
    [128] Chen C C, Aggarwal J K. Recognizing human action from a far field of view. In: Proceedings of the 2009 Workshop on Motion and Video Computing (WMVC'09). Snowbird, UT, USA: IEEE, 2009. 1-7 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5399231
    [129] Messing R, Pal C, Kautz H. Activity recognition using the velocity histories of tracked keypoints. In: Proceedings of the 12th International Conference on Computer Vision (ICCV). Kyoto, Japan: IEEE, 2009. 104-111 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5459154
    [130] Ryoo M S, Aggarwal J K. UT-interaction dataset, ICPR contest on semantic description of human activities (SDHA)[Online], available: http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html, December 10, 2016.
    [131] Jiang Y G, Ye G N, Chang S F, Ellis D, Loui A C. Consumer video understanding: a benchmark database and an evaluation of human and machine performance. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval (ICMR'11). Trento, Italy: ACM, 2011. Article No., 29 http://dl.acm.org/citation.cfm?id=1992025
    [132] Rohrbach M, Amin S, Andriluka M, Schiele B. A database for fine grained activity detection of cooking activities. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, USA: IEEE, 2012. 1194-1201 http://dl.acm.org/citation.cfm?id=2354909
    [133] Rohrbach M, Regneri M, Andriluka M, Amin S, Pinkal M, Schiele B. Script data for attribute-based recognition of composite activities. In: Proceedings of the 12th European Conference on Computer Vision (ECCV). Florence, Italy: Springer, 2012. 144-157 http://dl.acm.org/citation.cfm?id=2402952
    [134] Bojanowski P, Lajugie R, Bach F, Laptev I, Ponce J, Schmid C, Sivic J. Weakly supervised action labeling in videos under ordering constraints. Computer Vision——ECCV 2014. Cham, Germany: IEEE, 2014, 8693: 628-643
    [135] Rohrbach M, Rohrbach A, Regneri M, Amin S, Andriluka M, Pinkal M, Schiele B. Recognizing fine-grained and composite activities using hand-centric features and script data. International Journal of Computer Vision, 2016, 119(3):346-373 doi: 10.1007/s11263-015-0851-8
    [136] Heilbron F C, Escorcia V, Ghanem B, Niebles J C. Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015. 961-970 doi: 10.1109/CVPR.2015.7298698
    [137] Gkalelis N, Kim H, Hilton A, Nikolaidis N, Pitas I. The i3DPost multi-view and 3D human action/interaction database. In: Proceedings of the 2009 Conference for Visual Media Production (CVMP). London, UK: IEEE, 2009. 159-168 http://brain.oxfordjournals.org/lookup/external-ref?access_num=20674934&link_type=MED&atom=%2Fbrain%2F135%2F3%2F723.atom
    [138] De la Torre F, Hodgins J K, Montano J, Valcarcel S. Detailed human data acquisition of kitchen activities: the CMU-multimodal activity database (CMU-MMAC). In: Proceedings of the 2009 Workshop on Developing Shared Home Behavior Datasets to Advance HCI and Ubiquitous Computing Research, in Conjuction with CHI. Boston, MA, USA: ACM, 2009. 1-5 http://www.researchgate.net/publication/242754790_Detailed_Human_Data_Acquisition_of_Kitchen_Activities_the_CMU-Multimodal_Activity_Database_CMU-MMAC
    [139] Ni B B, Wang G, Moulin P. RGBD-HuDaAct: a color-depth video database for human daily activity recognition. In: Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). Barcelona, Spain: IEEE, 2011. 1147-1153 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6130379
    [140] Xia L, Chen C C, Aggarwal J K. View invariant human action recognition using histograms of 3D joints. In: Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, RI, USA: IEEE, 2012. 20-27 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6239233
    [141] Cheng Z W, Qin L, Ye Y T, Huang Q Q, Tian Q. Human daily action analysis with multi-view and color-depth data. In: Proceedings of the Computer Vision, ECCV 2012-Workshops and Demonstrations. Florence, Italy: Springer, 2012. 52-61
    [142] Ofli F, Chaudhry R, Kurillo G, Vidal R, Bajcsy R. Berkeley MHAD: a comprehensive multimodal human action database. In: Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV). Tampa, FL, USA: IEEE, 2013. 53-60 doi: 10.1109/WACV.2013.6474999
    [143] Oreifej O, Liu Z C. HON4D: histogram of oriented 4D normals for activity recognition from depth sequences. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 716-723 http://dl.acm.org/citation.cfm?id=2516099
    [144] Wei P, Zhao Y B, Zheng N N, Zhu S C. Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1165-1179 doi: 10.1109/TPAMI.2016.2574712
    [145] Yu G, Liu Z C, Yuan J S. Discriminative orderlet mining for real-time recognition of human-object interaction. In: Proceedings of the 12th Asian Conference on Computer Vision (ACCV). Singapore: Springer, 2014. 50-65
    [146] Abu-El-Haija S, Kothari N, Lee J, Natsev P, Toderici G, Varadarajan B, Vijayanarasimhan S. YouTube-8M: a large-scale video classification benchmark. arXiv: 1609. 08675, 2016. 1-10
  • 加载中
图(29) / 表(8)
计量
  • 文章访问数:  5525
  • HTML全文浏览量:  2586
  • PDF下载量:  1396
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 录用日期:  2017-07-18
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回