2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用深度卷积神经网络提高未知噪声下的语音增强性能

袁文浩 孙文珠 夏斌 欧世峰

袁文浩, 孙文珠, 夏斌, 欧世峰. 利用深度卷积神经网络提高未知噪声下的语音增强性能. 自动化学报, 2018, 44(4): 751-759. doi: 10.16383/j.aas.2018.c170001
引用本文: 袁文浩, 孙文珠, 夏斌, 欧世峰. 利用深度卷积神经网络提高未知噪声下的语音增强性能. 自动化学报, 2018, 44(4): 751-759. doi: 10.16383/j.aas.2018.c170001
YUAN Wen-Hao, SUN Wen-Zhu, XIA Bin, OU Shi-Feng. Improving Speech Enhancement in Unseen Noise Using Deep Convolutional Neural Network. ACTA AUTOMATICA SINICA, 2018, 44(4): 751-759. doi: 10.16383/j.aas.2018.c170001
Citation: YUAN Wen-Hao, SUN Wen-Zhu, XIA Bin, OU Shi-Feng. Improving Speech Enhancement in Unseen Noise Using Deep Convolutional Neural Network. ACTA AUTOMATICA SINICA, 2018, 44(4): 751-759. doi: 10.16383/j.aas.2018.c170001

利用深度卷积神经网络提高未知噪声下的语音增强性能

doi: 10.16383/j.aas.2018.c170001
基金项目: 

山东省自然科学基金 ZR2014FM007

国家自然科学基金 61473179

国家自然科学基金 61701286

山东省自然科学基金 ZR2015FL003

山东省自然科学基金 ZR2017MF047

详细信息
    作者简介:

    孙文珠  博士, 山东理工大学计算机科学与技术学院讲师.主要研究方向为多媒体信号传输, 视频编码.E-mail:swz_lw@sina.com

    夏斌  博士, 山东理工大学计算机科学与技术学院副教授.主要研究方向为信号处理.E-mail:xiabin@sdut.edu.cn

    欧世峰  博士, 烟台大学光电信息科学技术学院副教授.主要研究方向为语音信号处理, 盲信号处理.E-mail:ousfeng@126.com

    通讯作者:

    袁文浩  博士, 山东理工大学计算机科学与技术学院讲师.主要研究方向为语音信号处理, 语音增强.本文通信作者.E-mail:why_sdut@126.com

Improving Speech Enhancement in Unseen Noise Using Deep Convolutional Neural Network

Funds: 

Shandong Provincial Natural Science Foundation of China ZR2014FM007

National Natural Science Foundation of China 61473179

National Natural Science Foundation of China 61701286

Shandong Provincial Natural Science Foundation of China ZR2015FL003

Shandong Provincial Natural Science Foundation of China ZR2017MF047

More Information
    Author Bio:

     Ph. D., lecturer at the College of Computer Science and Technology, Shandong University of Technology. His research interest covers multimedia signal processing and video coding

     Ph. D., associate professor at the College of Computer Science and Technology, Shandong University of Technology. His main research interest is signal processing

     Ph. D., associate professor at the Institute of Science and Technology for Opto-electronic Information, Yantai University. His research interest covers speech signal processing and blind source separation

    Corresponding author: YUAN Wen-Hao  Ph. D., lecturer at the College of Computer Science and Technology, Shandong University of Technology. His research interest covers speech signal processing and speech enhancement. Corresponding author of this paper
  • 摘要: 为了进一步提高基于深度学习的语音增强方法在未知噪声下的性能,本文从神经网络的结构出发展开研究.基于在时间与频率两个维度上,语音和噪声信号的局部特征都具有强相关性的特点,采用深度卷积神经网络(Deep convolutional neural network,DCNN)建模来表示含噪语音和纯净语音之间的复杂非线性关系.通过设计有效的训练特征和训练目标,并建立合理的网络结构,提出了基于深度卷积神经网络的语音增强方法.实验结果表明,在未知噪声条件下,本文方法相比基于深度神经网络(Deep neural network,DNN)的方法在语音质量和可懂度两种指标上都有明显提高.
    1)  本文责任编委 党建武
  • 图  1  DNN结构示意图

    Fig.  1  Schematic diagram of DNN

    图  2  DCNN结构示意图

    Fig.  2  Schematic diagram of DCNN

    图  3  本文DCNN的结构框图

    Fig.  3  Structure diagram of the proposed DCNN

    图  4  两种网络的训练误差和测试误差

    Fig.  4  Training error and testing error of two networks

    图  5  $-5$ dB的Factory2噪声下的增强语音语谱图示例

    Fig.  5  An example of spectrogram of enhanced speech under Factory2 noise at $-5$ dB SNR

    图  6  卷积层数量对网络性能的影响

    Fig.  6  The influence of the number of convolutional layers on the network performance

    图  7  池化层对网络性能的影响

    Fig.  7  The influence of the pooling layers on the network performance

    图  8  $-5$ dB的HF channel噪声下的增强语音语谱图示例

    Fig.  8  An example of spectrogram of enhanced speech under HF channel noise at $-5$ dB SNR

    图  9  Batch normalization层对网络性能的影响

    Fig.  9  The influence of the batch normalization layers on the network performance

    图  10  两种特征训练得到的DNN和DCNN的性能比较

    Fig.  10  The performance comparisons for DNN and DCNN trained using two kinds of feature

    图  11  两种特征训练得到的DNN和DCNN的性能比较

    Fig.  11  The performance comparisons for DNN and DCNN trained using two kinds of feature

    表  1  三种方法的平均PESQ得分

    Table  1  The average PESQ score for three methods

    噪声类型信噪比
    (dB)
    含噪语音DNN_11FDNN_15FDCNN
    Factory2-51.732.252.27 ${\bf 2.33}$
    02.072.572.58 ${\bf 2.65}$
    52.402.832.82 ${\bf 2.89}$
    Buccaneer1-51.361.881.92 ${\bf 1.93}$
    01.632.242.26 ${\bf 2.27}$
    51.952.542.54 ${\bf 2.56} $
    Destroyer engine-51.592.011.99 ${\bf 2.15} $
    01.812.272.26 ${\bf 2.46}$
    52.102.532.55$ {\bf 2.76}$
    HF channel-51.361.71.71 ${\bf 2.03} $
    01.582.042.06 ${\bf 2.37}$
    51.852.382.39 ${\bf 2.65}$
    下载: 导出CSV

    表  2  三种方法的平均STOI得分

    Table  2  The average STOI score for three methods

    噪声类型信噪比
    (dB)
    含噪语音DNN_11F DNN_15F DCNN
    Factory2-50.650.760.76${\bf 0.78 }$
    00.760.850.84${\bf 0.86 } $
    50.850.890.89${\bf 0.91 }$
    Buccaneer1-50.510.660.66${\bf 0.68 }$
    00.630.770.77${\bf 0.78 }$
    50.750.850.85${\bf 0.86 }$
    Destroyer engine-50.570.620.63${\bf 0.70 }$
    00.690.750.75${\bf 0.82 }$
    50.810.850.85${\bf 0.90 }$
    HF channel-50.570.690.69${\bf 0.73 }$
    00.690.780.79${\bf 0.82 }$
    50.800.860.86${\bf 0.88 }$
    下载: 导出CSV

    表  3  三种方法的平均SegSNR

    Table  3  The average SegSNR for three methods

    噪声类型信噪比
    (dB)
    含噪语音
    (dB)
    DNN_11F
    (dB)
    DNN_15F
    (dB)
    DCNN
    (dB)
    Factory2-5-6.90-0.69-0.59-0.05
    0-4.500.340.420.95
    5-1.571.241.291.80
    Buccaneer1-5-7.21-1.52-1.40-0.96
    0-4.90-0.50-0.390.11
    5-2.030.460.531.03
    Destroyer engine-5-7.15-2.86-2.81-2.16
    0-4.90-1.37-1.24-0.54
    5-1.910.040.210.89
    HF channel-5-7.24-1.13-1.210.35
    0-4.910.05-0.021.34
    5-2.091.041.022.03
    下载: 导出CSV
  • [1] Loizou P C. Speech Enhancement:Theory and Practice. Florida:CRC Press, 2013.
    [2] Ephraim Y, Malah D. Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2):443-445 http://ieeexplore.ieee.org/document/1164550/
    [3] Cohen I. Noise spectrum estimation in adverse environments:Improved minima controlled recursive averaging. IEEE Transactions on speech and audio processing, 2003, 11(5):466-475 http://www.researchgate.net/publication/3333946_Noise_spectrum_estimation_in_adverse_environments_improved_minima_controlled_recursive_averaging
    [4] Mohammadiha N, Smaragdis P, Leijon A. Supervised and unsupervised speech enhancement using nonnegative matrix factorization. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(10):2140-2151 doi: 10.1109/TASL.2013.2270369
    [5] 刘文举, 聂帅, 梁山, 张学良.基于深度学习语音分离技术的研究现状与进展.自动化学报, 2016, 42(6):819-833 http://www.aas.net.cn/CN/abstract/abstract18873.shtml

    Liu Wen-Ju, Nie Shuai, Liang Shan, Zhang Xue-Liang. Deep learning based speech separation technology and its developments. Acta Automatica Sinica, 2016, 42(6):819-833 http://www.aas.net.cn/CN/abstract/abstract18873.shtml
    [6] Wang Y X, Wang D L. Towards scaling up classification-based speech separation. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(7):1381-1390 doi: 10.1109/TASL.2013.2250961
    [7] Wang Y X, Narayanan A, Wang D L. On training targets for supervised speech separation. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(12):1849-1858 doi: 10.1109/TASLP.2014.2352935
    [8] Xu Y, Du J, Dai L R, Lee C H. An experimental study on speech enhancement based on deep neural networks. IEEE Signal Processing Letters, 2014, 21(1):65-68 doi: 10.1109/LSP.2013.2291240
    [9] Xu Y, Du J, Dai L R, Lee C H. A regression approach to speech enhancement based on deep neural networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1):7-19 http://www.researchgate.net/publication/272436458_A_Regression_Approach_to_Speech_Enhancement_Based_on_Deep_Neural_Networks
    [10] Williamson D S, Wang Y X, Wang D L. Complex ratio masking for monaural speech separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(3):483-492 doi: 10.1109/TASLP.2015.2512042
    [11] Xu Y, Du J, Huang Z, Dai L R, Lee C H. Multi-objective learning and mask-based post-processing for deep neural network based speech enhancement. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association. Dresden, Germany: ISCA, 2015. 1508-1512
    [12] Wang Y X, Chen J T, Wang D L. Deep Neural Network Based Supervised Speech Segregation Generalizes to Novel Noises Through Large-scale Training, Technical Report OSU-CISRC-3/15-TR02, Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio, USA, 2015
    [13] Chen J T, Wang Y X, Yoho S E, Wang D L, Healy E W. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises. The Journal of the Acoustical Society of America, 2016, 139(5):2604-2612 doi: 10.1121/1.4948445
    [14] Chen J T, Wang Y X, Wang D L. Noise perturbation for supervised speech separation. Speech Communication, 2016, 78:1-10 https://www.sciencedirect.com/science/article/pii/S0167639315001405
    [15] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems. Nevada, USA: Curran Associates Inc. 2012. 1097-1105 http://www.researchgate.net/publication/267960550_ImageNe
    [16] Abdel-Hamid O, Mohamed A, Jiang H, Penn G. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan: IEEE, 2012. 4277-4280
    [17] Abdel-Hamid O, Deng L, Yu D. Exploring convolutional neural network structures and optimization techniques for speech recognition. In: Proceedings of the 14th Annual Conference of the International Speech Communication Association. Lyon, France: ISCA, 2013. 3366-3370 http://www.researchgate.net/publication/264859599_Exploring_Convolutional_Neural_Network_Structures_and_Optimization_Techniques_for_Speech_Recognition
    [18] Sainath T N, Kingsbury B, Saon G, Soltau H, Mohamed A R, Dahl G, Ramabhadran B. Deep convolutional neural networks for large-scale speech tasks. Neural Networks, 2015, 64:39-48 https://www.sciencedirect.com/science/article/pii/S0893608014002007
    [19] Qian Y M, Bi M X, Tan T, Yu K. Very deep convolutional neural networks for noise robust speech recognition. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2016, 24(12):2263-2276 http://www.researchgate.net/publication/308823854_Very_Deep_Convolutional_Neural_Networks_for_Robust_Speech_Recognition
    [20] Bi M X, Qian Y M, Yu K. Very deep convolutional neural networks for LVCSR. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association. Dresden, Germany: ISCA, 2015. 3259-3263
    [21] Qian Y, Woodland P C. Very deep convolutional neural networks for robust speech recognition. In: Proceedings of the 2016 IEEE Spoken Language Technology Workshop. San Juan, Puerto Rico: IEEE, 2016. 481-488 http://www.researchgate.net/publication/313587893_Very_deep_convolutional_neural_networks_for_robust_speech_recognition
    [22] Sercu T, Puhrsch C, Kingsbury B, LeCun Y. Very deep multilingual convolutional neural networks for LVCSR. In: Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China: IEEE, 2016. 4955-4959
    [23] Sercu T, Goel V. Advances in very deep convolutional neural networks for LVCSR. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association. California, USA: ISCA, 2016. 3429-3433 http://www.researchgate.net/publication/307889292_Advances_in_Very_Deep_Convolutional_Neural_Networks_for_LVCSR
    [24] Park S R, Lee J. A fully convolutional neural network for speech enhancement. arXiv: 1609. 07132, 2016.
    [25] Fu S W, Tsao Y, Lu X. SNR-Aware convolutional neural network modeling for speech enhancement. In: Proceedings of the 17th Annual Conference of the International Speech Communication Association. San Francisco, USA: ISCA, 2016. 8-12 http://www.researchgate.net/publication/307889660_SNR-Aware_Convolutional_Neural_Network_Modeling_for_Speech_Enhancement
    [26] Garofolo J S, Lamel L F, Fisher W M, Fiscus J G, Pallett D S, Dahlgren N L, Zue V. TIMIT acoustic-phonetic continuous speech corpus. Linguistic Data Consortium, Philadelphia, 1993. https://www.researchgate.net/publication/243787812_TIMIT_acoustic-phonetic_continuous_speech_corpus
    [27] Hu G N. 100 nonspeech sounds[online], available: http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html, April 20, 2004
    [28] Varga A, Steeneken Herman J M. Assessment for automatic speech recognition:Ⅱ. NOISEX-92:a database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 1993, 12(3):247-251 doi: 10.1016/0167-6393(93)90095-3
    [29] Beerends J G, Rix A W, Hollier M P, Hekstra A P. Perceptual evaluation of speech quality (PESQ)——a new method for speech quality assessment of telephone networks and codecs. In: Proceedings of the 2001 IEEE International Conference on Acoustics, Speech and Signal Processing. Utah, USA: IEEE, 2001. 749-752 http://dl.acm.org/citation.cfm?id=1259107
    [30] Taal C H, Hendriks R C, Heusdens R, Jensen J. An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7):2125-2136 doi: 10.1109/TASL.2011.2114881
    [31] Yu D, Eversole A, Seltzer M L, Yao K S, Huang Z H, Guenter B, Kuchaiev O, Zhang Y, Seide F, Wang H M, Droppo J, Zweig G, Rossbach C, Currey J, Gao J, May A, Peng B L, Stolcke A, Slaney M. An Introduction to Computational Networks and the Computational Network Toolkit, Technical Report, Tech. Rep. MSR, Microsoft Research, 2014.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  2375
  • HTML全文浏览量:  374
  • PDF下载量:  1339
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 录用日期:  2017-07-18
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回