2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑时间特性影响的控制系统可重构性定量评价方法研究

屠园园 王大轶 李文博

屠园园, 王大轶, 李文博. 考虑时间特性影响的控制系统可重构性定量评价方法研究. 自动化学报, 2018, 44(7): 1260-1270. doi: 10.16383/j.aas.2018.c160752
引用本文: 屠园园, 王大轶, 李文博. 考虑时间特性影响的控制系统可重构性定量评价方法研究. 自动化学报, 2018, 44(7): 1260-1270. doi: 10.16383/j.aas.2018.c160752
TU Yuan-Yuan, WANG Da-Yi, LI Wen-Bo. Quantitative Reconfigurability Evaluation for Control Systems in View of Time Properties. ACTA AUTOMATICA SINICA, 2018, 44(7): 1260-1270. doi: 10.16383/j.aas.2018.c160752
Citation: TU Yuan-Yuan, WANG Da-Yi, LI Wen-Bo. Quantitative Reconfigurability Evaluation for Control Systems in View of Time Properties. ACTA AUTOMATICA SINICA, 2018, 44(7): 1260-1270. doi: 10.16383/j.aas.2018.c160752

考虑时间特性影响的控制系统可重构性定量评价方法研究

doi: 10.16383/j.aas.2018.c160752
基金项目: 

国家自然科学基金 61573060

国家自然科学基金 61690215

国家杰出青年科学基金 61525301

国家自然科学基金 61203093

国家自然科学基金 61640304

详细信息
    作者简介:

    屠园园  北京控制工程研究所博士研究生.2014年于哈尔滨工业大学获学士学位.主要研究方向为卫星控制系统的可重构性评价与设计.E-mail:tyyfti@163.com

    李文博  北京控制工程研究所高级工程师.2012年在哈尔滨工业大学获博士学位.主要研究方向为故障诊断与容错控制, 卫星控制系统的可诊断性评价与设计.E-mail:liwenbo_bice@163.com

    通讯作者:

    王大轶  北京空间飞行器总体设计部研究员.主要研究方向为航天器的自主制导、导航与控制, 故障诊断与容错控制.本文通信作者.E-mail:dayiwang@163.com

Quantitative Reconfigurability Evaluation for Control Systems in View of Time Properties

Funds: 

National Natural Science Foundation of China 61573060

National Natural Science Foundation of China 61690215

National Science Fund for Distinguished Young Scholars 61525301

National Natural Science Foundation of China 61203093

National Natural Science Foundation of China 61640304

More Information
    Author Bio:

     Ph. D. candidate at Beijing Institute of Control Engineering. She received her bachelor degree from Harbin Institute of Technology in 2014. Her research interest covers fault reconflgurability evaluation and design for satellite control systems

     Senior engineer at Beijing Institute of Control Engineering. He received his Ph. D. degree from Harbin Institute of Technology in 2012. His research interest covers fault diagnosis and tolerant control, fault diagnosability evaluation and design for satellite control systems

    Corresponding author: WANG Da-Yi  Professor at Beijing Institute of Spacecraft System Engineering. His research interest covers autonomous guidance, navigation and control, fault diagnosis, and tolerant control for spacecrafts. Corresponding author of this paper.
  • 摘要: 故障诊断时间和控制重构延时严重影响了控制系统的实际重构性能,然而目前缺乏相关研究.基于该现状,本文针对执行器快变偏差故障,重点考虑时间特性影响,结合能量与输入约束,对控制系统可重构性的定量评价问题展开了研究.首先,以基于观测器的故障诊断算法和控制重构方案为例,建立了重构系统模型;然后,以该模型为对象,通过对重构过程中关键时刻的分析,深入研究了系统故障后的动态特性,并综合考虑故障引起的状态偏差、资源浪费以及诊断误差,设计了用于描述故障系统性能下降程度的二次型性能指标;其次,利用Lyapunov稳定性理论,定量求解了性能指标关于时间的一般表达式,进而求得该指标在整个时域中的最优解;最后,基于最优性能指标,引入了可重构度的概念,实现了对控制系统可重构性的理论判定以及定量描述,并通过数值仿真验证了所提可重构性分析方法的有效性.
    1)  本文责任编委 姜斌
  • 图  1  重构控制过程的时间响应

    Fig.  1  Time response of reconfiguration process

    图  2  控制系统可重构性评价流程

    Fig.  2  Flowchart of the quantitative reconfigurability evaluation for control systems

    图  3  标称、故障与重构系统的输出响应

    Fig.  3  Output discrepancies of nominal, fault and reconfigurated systems

    图  4  ${t_d} = 34$s时, 性能指标${J_s}$随${t_r}$的变化曲线

    Fig.  4  Cost index evolution for different ${t_r}$ (${t_d} = 34$s)

    图  5  ${t_d} = {t_r}$时, 性能指标${J_s}$随${t_d}$的变化曲线

    Fig.  5  Cost index evolution for different ${t_d}$ (${t_d} = {t_r}$)

    图  6  性能指标${J_s}$关于不同${t_d}, {t_r}$的变化曲线

    Fig.  6  Cost index evolution for different ${t_d}, {t_r}$

    图  7  可重构性指标$\rho $关于不同${t_d}, {t_r}$的变化曲线

    Fig.  7  Degree of reconfigurability for different ${t_d}, {t_r}$

    图  8  ${t_{r1}}$与$t_r^*$两个不同重构时刻的系统输出响应

    Fig.  8  Output discrepancies for two instants ${t_{r1}}, t_r^*$

    图  9  ${t_{r1}}$与$t_r^*$两个不同重构时刻的系统输入响应

    Fig.  9  Input discrepancies for two instants ${t_{r1}}, t_r^*$

    图  10  ILO系统${t_d} = {t_r}$时, 性能指标${J_s}$随${t_d}$的变化曲线

    Fig.  10  Cost index evolution for different ${t_d}$ (${t_d} = {t_r}$, ILO)

    图  11  ILO系统性能指标${J_s}$关于不同${t_d}, {t_r}$的变化曲线

    Fig.  11  Cost index evolution for different ${t_d}, {t_r}$ (ILO)

  • [1] Gao Z W, Ding S X, Cecati C. Real-time fault diagnosis and fault-tolerant control. IEEE Transactions on Industrial Electronics, 2015, 62(6):3752-3756 doi: 10.1109/TIE.2015.2417511
    [2] 李文博, 王大轶, 刘成瑞.动态系统实际故障可诊断性的量化评价研究.自动化学报, 2015, 41(3):497-507 http://www.aas.net.cn/CN/abstract/abstract18628.shtml

    Li Wen-Bo, Wang Da-Yi, Liu Cheng-Rui. Quantitative evaluation of actual fault diagnosability for dynamic systems. Acta Automatica Sinica, 2015, 41(3):497-507 http://www.aas.net.cn/CN/abstract/abstract18628.shtml
    [3] 段文杰, 王大轶, 刘成瑞.卫星控制系统离散积分滑模容错控制.控制理论与应用, 2015, 32(2):133-141 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201502001

    Duan Wen-Jie, Wang Da-Yi, Liu Cheng-Rui. Discrete-time integral sliding-mode fault-tolerant controller for satellite control system. Control Theory & Applications, 2015, 32(2):133-141 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201502001
    [4] Wu N E, Zhou K M, Salomon G. Control reconfigurability of linear time-invariant systems. Automatica, 2000, 36(11):1767-1771 doi: 10.1016/S0005-1098(00)00080-7
    [5] 关守平, 杨飞生.面向重构目标的控制系统可重构性.信息与控制, 2010, 39(4):391-396 http://www.oalib.com/paper/4719569

    Guan Shou-Ping, Yang Fei-Sheng. Reconfiguration-goal-oriented control system reconfigurability. Information and Control, 2010, 39(4):391-396 http://www.oalib.com/paper/4719569
    [6] Staroswiecki M. On reconfigurability with respect to actuator failures. In:Proceedings of the 15th Triennial World Congress of the International Federation of Automatic Control. Barcelona, Spanish:IFAC, 2002. 775-780
    [7] Du G X, Quan Q, Yang B X, Cai K Y. Controllability analysis for multirotor helicopter rotor degradation and failure. Journal of Guidance, Control, and Dynamics, 2015, 38(5):978-985 doi: 10.2514/1.G000731
    [8] Khelassi A, Theilliol D, Weber P. Reconfigurability analysis for reliable fault-tolerant control design. International Journal of Applied Mathematics and Computer Science, 2011, 21(3):431-439 doi: 10.2478/v10006-011-0032-z
    [9] Wu N E, Busch T. Operational reconfigurability in command and control. In:Proceedings of the 2004 American Control Conference. Boston, USA:IEEE, 2004. 4426-4431
    [10] Gehin A L, Staroswiecki M. Reconfiguration analysis using generic component models. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2008, 38(3):575-583 doi: 10.1109/TSMCA.2008.918608
    [11] 段文杰, 王大轶, 刘成瑞.一种线性系统可重构控制分析方法.自动化学报, 2014, 40(12):2726-2736 http://www.aas.net.cn/CN/abstract/abstract18552.shtml

    Duan Wen-Jie, Wang Da-Yi, Liu Cheng-Rui. An analysis method for reconfigurable control of linear systems. Acta Automatica Sinica, 2014, 40(12):2726-2736 http://www.aas.net.cn/CN/abstract/abstract18552.shtml
    [12] 项昌毅, 杨浩, 程月华, 姜斌, 刘成瑞.卫星姿态控制系统的可重构性指标分配.航天控制, 2014, 32(2):46-52, 59 http://mall.cnki.net/magazine/Article/HTKZ201402009.htm

    Xiang Chang-Yi, Yang Hao, Cheng Yue-Hua, Jiang Bin, Liu Cheng-Rui. Reconfigurable allocation of satellite attitude control system. Aerospace Control, 2014, 32(2):46-52, 59 http://mall.cnki.net/magazine/Article/HTKZ201402009.htm
    [13] Staroswiecki M, Cazaurang F. Fault recovery by nominal trajectory tracking. In:Proceedings of the 2008 American Control Conference. Seattle, Washington, USA:IEEE, 2008. 1070-1075
    [14] Zhang Y M, Jiang J. Issues on integration of fault diagnosis and reconfigurable control in active fault-tolerant control systems. IFAC Proceedings Volumes, 2006, 39(13):1437-1448 doi: 10.3182/20060829-4-CN-2909.00240
    [15] Hamdaoui R, Abdelkrim M N. Conditions on diagnosis and accommodation delays for actuator fault recoverability. In:Proceedings of the 8th International Multi-Conference on Systems, Signals and Devices. Sousse, Tunisia:IEEE, 2011. 1-6
    [16] Joshi S M, González O R, Upchurch J M. Identifiability of additive actuator and sensor faults by state augmentation. Journal of Guidance, Control, and Dynamics, 2014, 37(3):941-946 doi: 10.2514/1.62523
    [17] Upchurch J M, González O R, Joshi S M. Identifiability of additive, time-varying actuator and sensor faults by state augmentation, Technical Report NASA/TM-2014-218669, NASA Langley Research Center, Hampton, VA, USA, 2014.
    [18] Hamdaoui R, Guesmi S, El Harabi R. UIO based robust fault detection and estimation. In:Proceedings of the 2013 International Conference on Control, Decision and Information Technologies. Hammamet, Tunisia:IEEE, 2013. 76-81
    [19] 胡志坤, 孙岩, 姜斌, 何静, 张昌凡.一种基于最优未知输入观测器的故障诊断方法.自动化学报, 2013, 39(8):1225-1230 http://www.aas.net.cn/CN/abstract/abstract18153.shtml

    Hu Zhi-Kun, Sun Yan, Jiang Bin, He Jing, Zhang Chang-Fan. An optimal unknown input observer based fault diagnosis method. Acta Automatica Sinica, 2013, 39(8):1225-1230 http://www.aas.net.cn/CN/abstract/abstract18153.shtml
    [20] Jiang B, Staroswiecki M. Adaptive observer design for robust fault estimation. International Journal of Systems Science, 2002, 33(9):767-775 doi: 10.1080/00207720210144776
    [21] Collins E G, Song T L. Robust H estimation and fault detection of uncertain dynamic systems. Journal of Guidance, Control, and Dynamics, 2000, 23(5):857-864 doi: 10.2514/2.4615
    [22] Tang G Y, Li J. Optimal fault diagnosis for systems with delayed measurements. IET Control Theory & Applications, 2008, 2(11):990-998 https://www.researchgate.net/publication/224347343_Optimal_fault_diagnosis_for_systems_with_delayed_measurements
    [23] Chen W, Saif M. Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(3):352-356 doi: 10.1115/1.2719773
  • 加载中
图(11)
计量
  • 文章访问数:  2475
  • HTML全文浏览量:  275
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-18
  • 录用日期:  2017-02-13
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回