2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多属性权重的分类数据子空间聚类算法

庞宁 张继福 秦啸

庞宁, 张继福, 秦啸. 一种基于多属性权重的分类数据子空间聚类算法. 自动化学报, 2018, 44(3): 517-532. doi: 10.16383/j.aas.2018.c160726
引用本文: 庞宁, 张继福, 秦啸. 一种基于多属性权重的分类数据子空间聚类算法. 自动化学报, 2018, 44(3): 517-532. doi: 10.16383/j.aas.2018.c160726
PANG Ning, ZHANG Ji-Fu, QIN Xiao. A Subspace Clustering Algorithm of Categorical Data Using Multiple Attribute Weights. ACTA AUTOMATICA SINICA, 2018, 44(3): 517-532. doi: 10.16383/j.aas.2018.c160726
Citation: PANG Ning, ZHANG Ji-Fu, QIN Xiao. A Subspace Clustering Algorithm of Categorical Data Using Multiple Attribute Weights. ACTA AUTOMATICA SINICA, 2018, 44(3): 517-532. doi: 10.16383/j.aas.2018.c160726

一种基于多属性权重的分类数据子空间聚类算法

doi: 10.16383/j.aas.2018.c160726
基金项目: 

国家自然科学基金 61572343

详细信息
    作者简介:

    庞宁 太原科技大学博士研究生, 副教授.2007年获得山西大学计算机与信息技术学院硕士学位.主要研究方向为数据挖掘, 并行计算.E-mail:pn529@126.com

    秦啸 美国奥本大学计算机科学与软件工程系教授.2004年获得美国内布拉斯加州林肯大学计算机学院博士学位.主要研究方向为并行与分布式系统, 存储系统, 容错和性能评估.E-mail:qinxiao@gmail.com

    通讯作者:

    张继福 太原科技大学计算机科学与技术学院教授.2005年获得北京理工大学计算机学院博士学位.主要研究方向为数据挖掘, 并行与分布式计算, 人工智能.本文通信作者.E-mail:jifuzh@sina.com

A Subspace Clustering Algorithm of Categorical Data Using Multiple Attribute Weights

Funds: 

National Natural Science Foundation of China 61572343

More Information
    Author Bio:

    Ph. D. candidate and associate professor at Taiyuan University of Science and Technology. She received her master degree from the College of Computer Science and Technology, Shanxi University in 2007. Her research interest covers data mining and parallel computing

    Professor in the Department of Computer Science and Software Engineering, Auburn University, USA. He received his Ph. D. degree in computer science from the University of Nebraska-Lincoln, USA in 2004. His research interest covers parallel and distributed systems, storage systems, fault tolerance, real-time systems, and performance evaluation

    Corresponding author: ZHANG Ji-Fu Professor at the College of Computer Science and Technology, Taiyuan University of Science and Technology. He received his Ph. D. degree from the College of Computer Science, Beijing Institute of Technology in 2005. His research interest covers data mining, parallel and distributed computing, and artiflcial intelligence. Corresponding author of this paper
  • 摘要: 采用多属性频率权重以及多目标簇集质量聚类准则,提出一种分类数据子空间聚类算法.该算法利用粗糙集理论中的等价类,定义了一种多属性权重计算方法,有效地提高了属性的聚类区分能力;在多目标簇集质量函数的基础上,采用层次凝聚策略,迭代合并子簇,有效地度量了各类尺度的聚类簇;利用区间离散度,解决了使用阈值删除噪音点所带来的参数问题;利用属性对簇的依附程度,确定了聚类簇的属性相关子空间,提高了聚类簇的可理解性.最后,采用人工合成、UCI和恒星光谱数据集,实验验证了该聚类算法的可行性和有效性.
    1)  本文责任编委 曾志刚
  • 图  1  聚类示例图

    Fig.  1  Clustering sample

    图  2  合成数据集示例图

    Fig.  2  Synthetic data sets sample

    图  3  数据量可扩展性

    Fig.  3  Scalability with data

    图  4  维度可扩展性

    Fig.  4  Scalability with dimendionality

    图  5  抗噪性实验

    Fig.  5  Immunity to noise

    图  6  SAC算法在四种数据集上的对比实验

    Fig.  6  Contrast experiment on four data sets for SAC

    图  7  各算法在四种数据集上的(ARI)对比

    Fig.  7  Contrast experiment on four data sets (ARI) for all algorithms

    图  8  UCI数据集上的算法性能

    Fig.  8  Algorithm performance on UCI

    表  1  符号表示及含义

    Table  1  Symbol and notation

    符号表示 符号含义
    U 数据集
    $x_k$ 第 $k$ 个数据点
    $a_j$ 第 $j$ 维属性
    $NOS$ 由噪音点组成的集合
    $SA_s$ 簇 $C_s$ 的相关属性子空间
    A 属性集
    $x_{ki}$ 数据 $x_k$ 在第 $i$ 维属性上的属性取值
    $C_s$ 第 $s$ 个类簇
    $SD_s$ 簇 $C_s$ 的数据集合
    $V_{a_i}$ 属性 $a_i$ 的值域
    S 一个分类信息系统
    ${[x_k]}_{a_i}$ 包含数据点 $x_k$ 的 $a_i$ 等价类
    $n$ 数据点的总数
    $d$ 属性空间的总维数
    SC 子簇集
    下载: 导出CSV

    表  2  数据集

    Table  2  Dataset

    类别 数据集 数据量 维数 簇数 平衡数据 实验目的
    合成数据 Type 1 10 000 50 6 抗噪性对比实验
    Type 2 10 000 200 6 维度可扩展性对比实验
    Type 3 60 000 50 6 数据量可扩展性对比实验
    Type 4 10 000 50 6 非平衡数据集聚类效果对比实验
    UCI Voting 435 16 2 属性值域元素少对聚类效果的影响
    Splice 3 190 60 3 高维UCI数据集的效果对比实验
    Mushroom 8 124 22 2 大数据量聚类效果对比实验
    Zoo 101 17 7 多簇数据集性能实验; 属性子空间实验
    真实数据 光谱数据 8 315 208 7 真实数据聚类效果对比实验
    下载: 导出CSV

    表  3  SAC在光谱数据上性能指标变化

    Table  3  Noise immunity on the spectral data for SAC

    加入噪音数 去除噪音数 ARI $(\%)$ Purity $(\%)$ Jaccard $(\%)$ RI $(\%)$
    1 000 993 2.56 $\downarrow$ 0.13 $\downarrow$ 2.28 $\downarrow$ 2.08 $\downarrow$
    2 000 1 984 2.94 $\downarrow$ 0.57 $\downarrow$ 2.72 $\downarrow$ 2.21 $\downarrow$
    3 000 2 971 3.25 $\downarrow$ 0.92 $\downarrow$ 3.01 $\downarrow$ 2.52 $\downarrow$
    下载: 导出CSV

    表  4  UCI数据集上的算法性能

    Table  4  Algorithm performance on UCI

    算法 UCI ARI $(\%)$ Purity $(\%)$ Jaccard $(\%)$ RI $(\%)$
    DHCC Voting 53.67 86.67 63.17 76.84
    Splice 41.75 46.08 38.96 75.11
    Mushroom 29.90 89.50 38.22 63.52
    Zoo 73.79 73.26 68.05 89.21
    AT-DC Voting 38.5 80.92 54.23 69.28
    Splice 19.78 40.22 35.31 61.28
    Mushroom 45.20 93.21 48.81 72.63
    Zoo 92.00 92.08 88.55 97.03
    PROCAD Voting 58.49 88.28 66.39 79.11
    Splice 16.57 63.29 34.31 59.30
    Mushroom 61.10 89.11 68.22 80.56
    Zoo 10.91 42.57 23.79 28.81
    SAC Voting 84.88 96.09 86.80 92.47
    Splice 86.26 94.76 84.23 93.54
    Mushroom 46.21 84.25 59.62 73.13
    Zoo 85.37 92.08 79.53 94.95
    下载: 导出CSV

    表  5  Voting集上的实验结果

    Table  5  Experimental results on Voting

    算法 簇的总数 簇编号 democrat republican
    DHCC 2 0 49 159
    1 218 9
    AT-DC 2 0 186 1
    1 81 166
    PROCAD 2 0 226 10
    1 41 158
    SAC 2 0 2 153
    1 265 15
    下载: 导出CSV

    表  6  Splice集上的实验结果

    Table  6  Experimental results on Splice

    算法 簇的总数 簇编号 EI IE Neither
    DHCC 6 0 15 10 419
    1 668 19 28
    2 40 3 393
    3 11 0 369
    4 28 728 34
    5 5 8 412
    AT-DC 3 0 55 78 513
    1 151 644 1 058
    2 561 46 84
    PROCAD 4 0 304 0 0
    1 462 747 687
    2 1 20 909
    3 0 1 59
    SAC 7 0 765 82 37
    1 2 0 1
    2 0 682 45
    3 0 1 1 566
    4 0 2 0
    5 0 1 4
    6 0 0 2
    下载: 导出CSV

    表  7  Zoo集上的实验结果

    Table  7  Experimental results on Zoo

    算法 簇的总数 簇编号 Mammal Bird Reptile Fish Amphibian Insect Invertebrate
    DHCC 3 0 41 0 0 0 0 0 0
    1 0 0 5 13 4 0 8
    2 0 20 0 0 0 8 2
    AT-DC 7 0 41 0 2 0 1 0 0
    1 0 0 0 0 0 0 7
    2 0 0 0 0 3 0 0
    3 0 0 0 0 0 8 2
    4 0 20 0 0 0 0 0
    5 0 0 3 13 0 0 0
    6 0 0 0 0 0 0 1
    PROCAD 2 0 41 18 5 12 4 7 10
    1 0 2 0 1 0 1 0
    SAC 9 0 37 0 0 0 0 0 0
    1 4 0 0 13 0 0 0
    2 0 20 0 0 3 0 0
    3 0 0 0 0 0 0 6
    4 0 0 0 0 0 8 1
    5 0 0 2 0 3 0 0
    6 0 0 3 0 1 0 0
    7 0 0 0 0 0 0 2
    8 0 0 0 0 0 0 1
    下载: 导出CSV

    表  8  Mushroom集上的实验结果

    Table  8  Experimental results on Mushroom

    算法 簇的总数 簇编号 poisonous edible
    DHCC 10 0 24 32
    1 1 728 0
    2 1 296 0
    3 0 16
    4 736 2 880
    5 72 808
    6 0 216
    7 44 0
    8 16 64
    9 0 192
    AT-DC 8 0 360 3 536
    1 0 288
    2 1 734 0
    3 456 192
    4 1 296 0
    5 64 0
    6 0 129
    7 6 0
    PROCAD 2 0 3 050 20
    1 866 4 188
    SAC 3 0 1 258 4 185
    1 2 615 23
    2 43 0
    下载: 导出CSV

    表  9  Zoo数据集中的相关子空间

    Table  9  Relevant subspace on Zoo data set

    簇号 簇内数据分布 子空间上的属性及其取值
    $C_1$ 100%Mammal hair = 1; eggs = 0; milk = 1; fins = 0; legs = 4
    $C_2$ 76.5%Fish; 23.5%Mammal fins = 1; legs = 0; aquatic = 1
    $C_3$ 100%Bird feathers = 1; airborne = 1; legs = 2
    $C_4$ 100%Invertebrate backbone = 0; legs = 0
    $C_5$ 88.8%Insect; 11.2%Invertebrate backbone = 0; legs = 6
    $C_6$ 60%Amphibian; 40%Reptile hair = 0; predator = 1; toothed = 1
    $C_7$ 75%Reptile; 25%Amphibian breathes = 1; legs = 4; tail = 1
    $C_8$ 100%Invertebrate legs = 8
    $C_9$ 100%Invertebrate legs = 5
    下载: 导出CSV

    表  10  各种离散化方法下的SAC聚类性能指标对比

    Table  10  Clustering performance of different discretization methods

    ARI $(\%)$ Purity $(\%)$ Jaccard $(\%)$ RI $(\%)$
    7等距离散 45.18 67.55 36.86 85.20
    11等距离散 46.65 84.02 36.12 87.38
    15等距离散 41.75 91.34 31.06 87.13
    18等距离散 36.68 91.61 26.61 86.46
    22等距离散 31.40 92.71 22.22 85.78
    下载: 导出CSV

    表  11  各算法在光谱数据上的对比实验

    Table  11  Algorithm performance on spectral data

    ARI $(\%)$ Purity $(\%)$ Jaccard $(\%)$ RI $(\%)$
    SAC 46.65 84.02 36.12 87.38
    PROCAD 43.41 80.18 32.41 82.72
    DHCC 40.79 78.31 31.23 79.67
    AT-DC 41.38 79.84 31.86 80.21
    EWKM 33.47 70.08 30.11 71.64
    CLICKS 40.65 71.66 30.83 75.79
    下载: 导出CSV
  • [1] Wu X H, Wu B, Sun J, Qiu S W, Li X. A hybrid fuzzy K-harmonic means clustering algorithm. Applied Mathematical Modelling, 2015, 39(12):3398-3409 doi: 10.1016/j.apm.2014.11.041
    [2] 蒋亦樟, 邓赵红, 王骏, 钱鹏江, 王士同.熵加权多视角协同划分模糊聚类算法.软件学报, 2014, 25(10):2293-2311 doi: 10.13328/j.cnki.jos.004510.html

    Jiang Yi-Zhang, Deng Zhao-Hong, Wang Jun, Qian Peng-Jiang, Wang Shi-Tong. Collaborative partition multi-view fuzzy clustering algorithm using entropy weighting. Journal of Software, 2014, 25(10):2293-2311 doi: 10.13328/j.cnki.jos.004510.html
    [3] Bai L, Liang J Y. Cluster validity functions for categorical data:a solution-space perspective. Data Mining and Knowledge Discovery, 2015, 29(6):1560-1597 doi: 10.1007/s10618-014-0387-5
    [4] Bouguettaya A, Yu Q, Liu X, Zhou X, Song A. Efficient agglomerative hierarchical clustering. Expert Systems with Applications, 2015, 42(5):2785-2797 doi: 10.1016/j.eswa.2014.09.054
    [5] 周晨曦, 梁循, 齐金山.基于约束动态更新的半监督层次聚类算法.自动化学报, 2015, 41(7):1253-1263 http://www.aas.net.cn/CN/abstract/abstract18699.shtml

    Zhou Chen-Xi, Liang Xun, Qi Jin-Shan. A semi-supervised agglomerative hierarchical clustering method based on dynamically updating constraints. Acta Automatica Sinica, 2015, 41(7):1253-1263 http://www.aas.net.cn/CN/abstract/abstract18699.shtml
    [6] Jeon Y, Yoon S. Multi-threaded hierarchical clustering by parallel nearest-neighbor chaining. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(9):2534-2548 doi: 10.1109/TPDS.2014.2355205
    [7] Kim Y, Shim K, Kim M S, Sup Lee J. DBCURE-MR:an efficient density-based clustering algorithm for large data using MapReduce. Information Systems, 2014, 42:15-35 doi: 10.1016/j.is.2013.11.002
    [8] Mansoori E G. GACH:a grid-based algorithm for hierarchical clustering of high-dimensional data. Soft Computing, 2014, 18(5):905-922 doi: 10.1007/s00500-013-1105-8
    [9] Shang R H, Zhang Z, Jiao L C, Wang W B, Yang S Y. Global discriminative-based nonnegative spectral clustering. Pattern Recognition, 2016, 55:172-182 doi: 10.1016/j.patcog.2016.01.035
    [10] 孙吉贵, 刘杰, 赵连宇.聚类算法研究.软件学报, 2008, 19(1):48-61 http://d.old.wanfangdata.com.cn/Periodical/rjxb200801006

    Sun Ji-Gui, Liu Jie, Zhao Lian-Yu. Clustering algorithms research. Journal of Software, 2008, 19(1):48-61 http://d.old.wanfangdata.com.cn/Periodical/rjxb200801006
    [11] Park I K, Choi G S. Rough set approach for clustering categorical data using information-theoretic dependency measure. Information Systems, 2015, 48:289-295 doi: 10.1016/j.is.2014.06.008
    [12] Chen L F, Wang S R, Wang K J, Zhu J P. Soft subspace clustering of categorical data with probabilistic distance. Pattern Recognition, 2016, 51:322-332 doi: 10.1016/j.patcog.2015.09.027
    [13] Cao F Y, Liang J Y, Bai L, Zhao X W, Dang C Y. A framework for clustering categorical time-evolving data. IEEE Transactions on Fuzzy Systems, 2010, 18(5):872-882 doi: 10.1109/TFUZZ.2010.2050891
    [14] Li M, Deng S B, Wang L, Feng S Z, Fan J P. Hierarchical clustering algorithm for categorical data using a probabilistic rough set model. Knowledge-Based Systems, 2014, 65:60-71 doi: 10.1016/j.knosys.2014.04.008
    [15] He X, Feng J, Konte B, Mai S T, Plant C. Relevant overlapping subspace clusters on categorical data. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2014. 213-222
    [16] Ji J C, Pang W, Zheng Y L, Wang Z, Ma Z Q. A novel artificial bee colony based clustering algorithm for categorical data. PLoS ONE, 2015, 10(5):e0127125 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4439097/
    [17] Gan G, Wu J, Yang Z. PARTCAT: a subspace clustering algorithm for high dimensional categorical data. In: Proceedings of the 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE, 2006: 4406-4412 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1716710
    [18] Bouveyron C, Girard S, Schmid C. High-dimensional data clustering. Computational Statistics and Data Analysis, 2007, 52(1):502-519 doi: 10.1016/j.csda.2007.02.009
    [19] Guha S, Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings of the 15th International Conference on Data Engineering. Sydney, Australia: IEEE, 1999. 512-521 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=754967&tag=1
    [20] Barbará D, Li Y, Couto J. COOLCAT: an entropy-based algorithm for categorical clustering. In: Proceedings of the 11th ACM International Conference on Information and Knowledge Management. McLean, VA, USA: ACM, 2002. 582-589 http://dl.acm.org/citation.cfm?id=584888
    [21] Cao L J, Chu K S, Chong W K, Lee H P, Gu Q M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing, 2003, 55(1-2):321-336 doi: 10.1016/S0925-2312(03)00433-8
    [22] Hu Q H, Xie Z X, Yu D R. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition, 2007, 40(12):3509-3521 doi: 10.1016/j.patcog.2007.03.017
    [23] Shang R H, Zhang Z, Jiao L C, Liu C Y, Li Y Y. Self-representation based dual-graph regularized feature selection clustering. Neurocomputing, 2016, 171:1242-1253 doi: 10.1016/j.neucom.2015.07.068
    [24] Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data:a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1):90-105 doi: 10.1145/1007730
    [25] Yip K Y, Cheung D W, Ng M K. HARP:a practical projected clustering algorithm. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11):1387-1397 doi: 10.1109/TKDE.2004.74
    [26] Müller E, Günnemann S, Assent I, Seidl T. Evaluating clustering in subspace projections of high dimensional data. Proceedings of the VLDB Endowment, 2009, 2(1):1270-1281 doi: 10.14778/1687627
    [27] Bouguessa M, Wang S R. Mining projected clusters in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(4):507-522 doi: 10.1109/TKDE.2008.162
    [28] Gan G J, Wu J H. Subspace clustering for high dimensional categorical data. ACM SIGKDD Explorations Newsletter, 2004, 6(2):87-94 doi: 10.1145/1046456
    [29] Zaki M J, Peters M, Assent I, Seidl T. CLICKS:an effective algorithm for mining subspace clusters in categorical datasets. Data and Knowledge Engineering, 2007, 60(1):51-70 doi: 10.1016/j.datak.2006.01.005
    [30] Bouguessa M. Clustering categorical data in projected spaces. Data Mining and Knowledge Discovery, 2015, 29(1):3-38 doi: 10.1007/s10618-013-0336-8
    [31] Cesario E, Manco G, Ortale R. Top-down parameter-free clustering of high-dimensional categorical data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(12):1607-1624 doi: 10.1109/TKDE.2007.190649
    [32] Xiong T K, Wang S R, Mayers A, Monga E. DHCC:divisive hierarchical clustering of categorical data. Data Mining and Knowledge Discovery, 2012, 24(1):103-135 doi: 10.1007/s10618-011-0221-2
    [33] Bai L, Liang J Y, Dang C Y, Cao F Y. A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognition, 2011, 44(12):2843-2861 doi: 10.1016/j.patcog.2011.04.024
    [34] Chan E Y, Ching W K, Ng M K, Huang J Z. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition, 2004, 37(5):943-952 doi: 10.1016/j.patcog.2003.11.003
    [35] Jing L P, Ng M K, Huang J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8):1026-1041 doi: 10.1109/TKDE.2007.1048
    [36] Xiong H, Wu J J, Chen J. K-means clustering versus validation measures:a data-distribution perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009, 39(2):318-331 doi: 10.1109/TSMCB.2008.2004559
    [37] Liang J Y, Bai L, Dang C Y, Cao F Y. The k-means-type algorithms versus imbalanced data distributions. IEEE Transactions on Fuzzy Systems, 2012, 20(4):728-745 doi: 10.1109/TFUZZ.2011.2182354
    [38] 曲开社, 翟岩慧, 梁吉业, 李德玉.形式概念分析对粗糙集理论的表示及扩展.软件学报, 2007, 18(9):2174-2182 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb200709012

    Qu Kai-She, Zhai Yan-Hui, Liang Ji-Ye, Li De-Yu. Representation and extension of rough set theory based on formal concept analysis. Journal of Software, 2007, 18(9):2174-2182 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjxb200709012
    [39] 刘少辉, 盛秋戬, 吴斌, 史忠植, 胡斐. Rough集高效算法的研究.计算机学报, 2003, 26(5):524-529 http://www.cqvip.com/qk/90818X/200305/7812506.html

    Liu Shao-Hui, Sheng Qiu-Jian, Wu Bin, Shi Zhong-Zhi, Hu Fei. Research on efficient algorithms for rough set methods. Chinese Journal of Computers, 2003, 26(5):524-529 http://www.cqvip.com/qk/90818X/200305/7812506.html
    [40] Kim M, Ramakrishna R S. Projected clustering for categorical datasets. Pattern Recognition Letters, 2006, 27(12):1405-1417 doi: 10.1016/j.patrec.2006.01.011
    [41] 张继福, 蒋义勇, 胡立华, 蔡江辉, 张素兰.基于概念格的天体光谱离群数据识别方法.自动化学报, 2008, 34(9):1060-1066 http://www.cqvip.com/qk/90250X/200809/28192750.html

    Zhang Ji-Fu, Jiang Yi-Yong, Hu Li-Hua, Cai Jiang-Hui, Zhang Su-Lan. A concept lattice based recognition method of celestial spectra outliers. Acta Automatica Sinica, 2008, 34(9):1060-1066 http://www.cqvip.com/qk/90250X/200809/28192750.html
    [42] Zhang J F, Zhao X J, Zhang S L, Yin S, Qin X. Interrelation analysis of celestial spectra data using constrained frequent pattern trees. Knowledge-Based Systems, 2013, 41:77-88 doi: 10.1016/j.knosys.2012.12.013
  • 加载中
图(8) / 表(11)
计量
  • 文章访问数:  2147
  • HTML全文浏览量:  568
  • PDF下载量:  1058
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-19
  • 录用日期:  2017-03-09
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回