2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘保持滤波的高光谱影像光谱-空间联合分类

张成坤 韩敏

连峰, 吕宁, 韩崇昭. 群目标联合检测与估计误差界的递推形式. 自动化学报, 2015, 41(12): 2026-2035. doi: 10.16383/j.aas.2015.c140794
引用本文: 张成坤, 韩敏. 基于边缘保持滤波的高光谱影像光谱-空间联合分类. 自动化学报, 2018, 44(2): 280-288. doi: 10.16383/j.aas.2018.c160704
LIAN Feng, LV Ning, HAN Chong-Zhao. The Recursive Form of Error Bound for Joint Detection and Estimation of Groups. ACTA AUTOMATICA SINICA, 2015, 41(12): 2026-2035. doi: 10.16383/j.aas.2015.c140794
Citation: ZHANG Cheng-Kun, HAN Min. Spectral-spatial Joint Classification of Hyperspectral Image with Edge-preserving Filtering. ACTA AUTOMATICA SINICA, 2018, 44(2): 280-288. doi: 10.16383/j.aas.2018.c160704

基于边缘保持滤波的高光谱影像光谱-空间联合分类

doi: 10.16383/j.aas.2018.c160704
基金项目: 

中央高校基本科研业务费(重点类项目) DUT17ZD216

国家自然科学基金 61374154

国家自然科学基金委科学仪器基础研究专项 51327004

国家自然科学基金 61773087

详细信息
    作者简介:

    张成坤   大连理工大学电子信息与电气工程学部博士研究生.主要研究方向为遥感图像处理, 高光谱影像分类.E-mail:zhangchengkundon@mail.dlut.edu.cn

    通讯作者:

    韩敏   大连理工大学电子信息与电气工程学部教授.主要研究方向为模式识别, 复杂系统建模与分析及时间序列预测.本文通信作者.E-mail:minhan@dlut.edu.cn

Spectral-spatial Joint Classification of Hyperspectral Image with Edge-preserving Filtering

Funds: 

Fundamental Research Funds for the Central Universities DUT17ZD216

National Natural Science Foundation of China 61374154

Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China 51327004

National Natural Science Foundation of China 61773087

More Information
    Author Bio:

     Ph. D. candidate at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. His research interest covers remote sensing image processing and hyperspectral data classification

    Corresponding author: HAN Min   Professor at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. Her research interest covers pattern recognition, modeling and analysis of complex system, and time series prediction. Corresponding author of this paper
  • 摘要: 针对高光谱遥感影像分类过程中,高维数据引起的"维数灾难"以及空间邻域一致性信息没有得到充分利用的问题,提出一种基于边缘保持滤波(Edge-preserving filtering,EPF)的高光谱影像光谱-空间联合分类算法.该算法首先进行波段子集划分和主成分提取,构造新的低维特征集,在保存影像结构信息的前提下降低数据维度;其次利用支持向量机(Support vector machine,SVM)获得低维特征集的初始分类概率图;然后利用原始影像主成分对初始分类概率图进行边缘保持滤波,融合光谱信息和空间信息;最后根据滤波后分类概率图对应像素点值的大小确定每个像素的类别.在Indian Pines和Pavia University两组高光谱数据上进行仿真实验,相同实验条件下,本文算法都获得最高分类精度和最少的时间消耗.仿真结果表明本文算法在高光谱遥感影像分类任务中具有明显的优势.

  • 本文责任编委 桑农
  • 图  1  算法主要流程

    Fig.  1  The procedure of the proposed method

    图  2  初始分类概率图双边滤波效果

    Fig.  2  Bilateral filtering result of initial probabilistic map

    图  3  Indian Pines数据集波段子集$K$对分类精度的影响

    Fig.  3  OA of the proposed methods with different numbers of band subsets $K$ in Indian Pines dataset

    图  4  Indian Pines影像双边滤波器参数对分类精度的影响

    Fig.  4  The influence of the parameters of Bilateral filter in Indian Pines image

    图  5  Indian Pines影像引导滤波器参数对分类精度的影响

    Fig.  5  The influence of the parameters of Guided filter in Indian Pines image

    图  6  Indian Pines数据集不同方法分类效果图

    Fig.  6  Classification maps for the Indian Pines dataset using different methods

    图  7  数据集波段子集$K$对分类精度的影响

    Fig.  7  OA of the proposed methods with different numbers of band subsets $K$ in Pavia University dataset

    图  8  Pavia University数据集不同方法分类效果图

    Fig.  8  Classification maps for the Pavia University dataset using different methods

    表  1  Indian Pines数据集不同方法分类精度

    Table  1  Classification accuracy for the Indian Pines dataset using different methods

    类别训练样本测试样本SVM (%) SVMCK (%) EPF-B-g (%) BFSVM-PC1 (%) BFSVM-PC3 (%) GFSVM-PC1 (%) GFSVM-PC3 (%)
    183873.6875.0090.91 ${\textbf{100.00}} $${\textbf{100.00}}$${\textbf{100.00}}$${\textbf{100.00}}$
    21431 28577.3789.3193.17${\textbf{99.83}}$99.5899.59${\textbf{99.83}}$
    38374778.1388.81${\textbf{98.98}}$97.4697.5997.5897.72
    42421376.2777.2596.30${\textbf{98.98}}$${\textbf{98.98}}$ 98.5198.53
    54843592.3094.8599.0298.8298.82${\textbf{99.52}}$ 98.81
    67365790.4398.8197.7699.8599.85${\textbf{100.00}}$99.85
    782088.8893.75 ${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$
    84843097.4898.18${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$ $ {\textbf{100.00}}$ ${\textbf{100.00}}$
    981238.09 ${\textbf{100.00}} $ ${\textbf{100.00}}$ ${\textbf{100.00}}$ $ {\textbf{100.00}}$ $\textbf{100.00} $ ${\textbf{100.00}}$
    109787577.0585.3093.6198.7498.8999.1398.76
    112462 20980.4692.98 ${\textbf{95.38}}$ 94.4794.1394.0193.73
    125953479.3487.1691.5896.3296.15${\textbf{97.94}}$ $ {\textbf{97.94}}$
    132118487.8097.9199.46$ {\textbf{100.00}}$ ${\textbf{100.00}}$$ {\textbf{100.00}}$ ${\textbf{100.00}}$
    141271 13890.9396.82 ${\textbf{97.76}}$ 97.1497.1595.9097.57
    153934774.8973.1094.7496.6596.3596.20${\textbf{97.01}}$
    1698490.6996.4792.41${\textbf{98.67}}$98.5198.4898.59
    OA (%) 82.8791.2895.8497.4297.3397.29${\textbf{97.43}}$
    AA (%) 80.8690.3696.3298.5698.5098.55${\textbf{98.65}}$
    $\kappa$ 系数0.80380.90040.9530.9710.9690.969${\textbf{0.971}}$
    时间(s)159.42210.44159.4734.0033.25 ${\textbf{29.42}}$ 32.91
    下载: 导出CSV

    表  2  Pavia University数据集不同方法分类精度

    Table  2  Classification accuracy for the Pavia University dataset using different methods

    类别训练样本测试样本SVM (%) SVMCK (%) EPF-B-g (%) BFSVM-PC1 (%) BFSVM-PC3 (%) GFSVM-PC1 (%) GFSVM-PC3 (%)
    12656 36692.9196.97${\textbf{98.11}} $95.1295.1295.1294.87
    274617 90396.07$ {\textbf{99.54}} $97.2599.2099.2299.2499.49
    3842 01580.9785.5199.94 ${\textbf{100.00}}$ ${\textbf{100.00}}$99.83${\textbf{100.00}}$
    41232 94195.1895.3199.7399.6799.6499.86${\textbf{100.00}}$
    5541 29198.0999.85${\textbf{100.00}}$ ${\textbf{100.00}}$$ {\textbf{100.00}}$99.9299.92
    62014 82888.7296.21${\textbf{98.87}}$98.6498.6498.7398.75
    7531 27785.8494.13${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$ ${\textbf{100.00}}$
    81473 53586.2292.5391.6592.9993.0192.77${\textbf{93.61}}$
    938909 ${\textbf{100.00}}$ ${\textbf{100.00}}$${\textbf{100.00}}$${\textbf{100.00}}$ ${\textbf{100.00}}$ $\textbf{100.00}$ ${\textbf{100.00}}$
    OA (%) 92.9297.0097.5598.0598.0698.07${\textbf{98.23}}$
    AA (%) 91.5696.5698.3998.4098.4098.39${\textbf{98.52}}$
    $\kappa$ 系数0.90610.96020.9670.9740.9740.974${\textbf{0.977}}$
    时间(s)94.56178.3297.4847.2247.01 ${\textbf{28.98}}$47.37
    下载: 导出CSV
  • [1] 潘宗序, 禹晶, 肖创柏, 孙卫东.基于光谱相似性的高光谱图像超分辨率算法.自动化学报, 2014, 40(12):2797-2807 http://www.aas.net.cn/CN/abstract/abstract18558.shtml

    Pan Zong-Xu, Yu Jing, Xiao Chuang-Bai, Sun Wei-Dong. Spectral similarity-based super resolution for hyperspectral images. Acta Automatica Sinica, 2014, 40 (12):2797-2807 http://www.aas.net.cn/CN/abstract/abstract18558.shtml
    [2] Du B, Zhang L P. Target detection based on a dynamic subspace. Pattern Recognition, 2014, 47 (1):344-358 doi: 10.1016/j.patcog.2013.07.005
    [3] Plaza A, Benediktsson J A, Boardman J W, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M, Tilton J C, Trianni G. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment, 2009, 113 (S1):S110-S122
    [4] Jia X P, Kuo B C, Crawford M M. Feature mining for hyperspectral image classification. Proceedings of the IEEE, 2013, 101 (3):676-697 doi: 10.1109/JPROC.2012.2229082
    [5] Han M, Liu B. Ensemble of extreme learning machine for remote sensing image classification. Neurocomputing, 2015, 149:65-70 doi: 10.1016/j.neucom.2013.09.070
    [6] Ramzi P, Samadzadegan F, Reinartz P. Classification of hyperspectral data using an AdaBoostSVM technique applied on band clusters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (6):2066-2079 doi: 10.1109/JSTARS.2013.2292901
    [7] 倪鼎, 马洪兵.基于近邻协同的高光谱图像谱-空联合分类.自动化学报, 2015, 41 (2):273-284 http://www.aas.net.cn/CN/abstract/abstract18606.shtml

    Ni Ding, Ma Hong-Bing. Spectral-spatial classification of hyperspectral images based on neighborhood collaboration. Acta Automatica Sinica, 2015, 41 (2):273-284 http://www.aas.net.cn/CN/abstract/abstract18606.shtml
    [8] Zhang Z, Pasolli E, Crawford M M, Tilton J C. An active learning framework for hyperspectral image classification using hierarchical segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9 (2):640-654 doi: 10.1109/JSTARS.2015.2493887
    [9] Fauvel M, Tarabalka Y, Benediktsson J A, Chanussot J, Tilton J C. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 2013, 101 (3):652-675 doi: 10.1109/JPROC.2012.2197589
    [10] Ji R R, Gao Y, Hong R C, Liu Q, Tao D C, Li X L. Spectral-spatial constraint hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (3):1811-1824 doi: 10.1109/TGRS.2013.2255297
    [11] Camps-Valls G, Gomez-Chova L, Munoz-Marí J, Vila-Francés J, Calpe-Maravilla J. Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2006, 3 (1):93-97 doi: 10.1109/LGRS.2005.857031
    [12] Benediktsson J A, Palmason J A, Sveinsson J R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (3):480-491 doi: 10.1109/TGRS.2004.842478
    [13] Tarabalka Y, Chanussot J, Benediktsson J A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 2010, 43 (7):2367-2379 doi: 10.1016/j.patcog.2010.01.016
    [14] Li X R, Pan J, He Y Q, Liu C S. Bilateral filtering inspired locality preserving projections for hyperspectral images. Neurocomputing, 2015, 164:300-306 doi: 10.1016/j.neucom.2015.01.021
    [15] Kang X D, Li S T, Benediktsson J A. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (5):2666-2677 doi: 10.1109/TGRS.2013.2264508
  • 期刊类型引用(29)

    1. 李倩,聂简,黄鸿殿,孔庆宇,奔粤阳. 基于大脑海马认知机理的主从式AUV协同定位方法. 中国惯性技术学报. 2024(01): 27-33 . 百度学术
    2. 游雄,李科,田江鹏,杨剑,余岸竹,贾奋励. 机器地图信息加工模型. 武汉大学学报(信息科学版). 2024(04): 516-526 . 百度学术
    3. 高昊,王仁茂. 基于类脑仿生的环境感知技术. 舰船电子对抗. 2024(05): 42-46+55 . 百度学术
    4. 陈荟慧,钟委钊. 基于人机协作的高质量城市图像采集方法. 应用科学学报. 2023(05): 801-814 . 百度学术
    5. 朱祥维,沈丹,肖凯,马岳鑫,廖祥,古富强,余芳文,高柯夫,刘经南. 类脑导航的机理、算法、实现与展望. 航空学报. 2023(19): 6-38 . 百度学术
    6. 于乃功,廖诣深. 基于鼠脑内嗅—海马认知机制的移动机器人空间定位模型. 生物医学工程学杂志. 2022(02): 217-227 . 百度学术
    7. 刘溢,阳加远,张驰. 一种基于RTX的移动机器人实时控制平台. 电子技术与软件工程. 2022(08): 169-172 . 百度学术
    8. 于子航,王改云. 基于路径积分强化的机器人目标导向运动控制. 计算机仿真. 2022(07): 412-415+516 . 百度学术
    9. 董卫华,刘毅龙,黑巧松,杨天宇. 泛地图空间认知理论与方法研究框架. 武汉大学学报(信息科学版). 2022(12): 2007-2014 . 百度学术
    10. 阮晓钢,李鹏,朱晓庆,刘鹏飞. 基于目标导向行为和空间拓扑记忆的视觉导航方法. 计算机学报. 2021(03): 594-608 . 百度学术
    11. 赵辰豪,吴德伟,韩昆,代传金. 无环境信息下多尺度网格细胞群空间表征模型. 系统工程与电子技术. 2021(03): 814-822 . 百度学术
    12. 阮晓钢,柴洁,武悦,张晓平,黄静. 基于海马体位置细胞的认知地图构建与导航. 自动化学报. 2021(03): 666-677 . 本站查看
    13. 冀俊忠,刘金铎,邹爱笑,杨翠翠. 一种融合多源信息的脑效应连接网络蚁群学习算法. 自动化学报. 2021(04): 864-881 . 本站查看
    14. 万刚,武易天. 地图空间认知的数学基础. 测绘学报. 2021(06): 726-738 . 百度学术
    15. 洪涛,史涛,任红格. 一种改进型RatSLAM算法构建认知地图的研究. 现代计算机. 2021(21): 47-52 . 百度学术
    16. 韩昆,吴德伟,来磊. 类脑导航中基于差分Hebbian学习的网格细胞构建模型. 系统工程与电子技术. 2020(03): 674-679 . 百度学术
    17. 黄宜庆,王正刚,王徽,葛愿. 基于边缘梯度算法的多移动机器人协作地图构建. 信息与控制. 2020(01): 62-68 . 百度学术
    18. 于乃功,廖诣深,郑相国. 一种基于海马位置细胞选择机制的空间认知模型. 生物医学工程学杂志. 2020(01): 27-37 . 百度学术
    19. 胡小平,毛军,范晨,张礼廉,何晓峰,韩国良,范颖. 仿生导航技术综述. 导航定位与授时. 2020(04): 1-10 . 百度学术
    20. 于乃功,冯慧,廖诣深,郑相国. 一种基于感知速度与感知角度的网格野计算模型. 生物医学工程学杂志. 2020(05): 863-874 . 百度学术
    21. 晁丽君,熊智,杨闯,华冰,王雅婷,刘建业. 无人飞行器三维类脑SLAM自主导航方法. 飞控与探测. 2020(05): 35-43 . 百度学术
    22. 张孝伍. 图上的概率分布及位置方向信息的表征方法. 青岛理工大学学报. 2019(01): 113-121 . 百度学术
    23. 方略,何洪军. 基于鼠脑海马位置细胞与Q学习面向目标导航. 生物信息学. 2019(01): 31-38 . 百度学术
    24. 王均,凌有铸,王静. 基于特征融合的仿生SLAM算法研究. 安徽工程大学学报. 2019(02): 26-33 . 百度学术
    25. 刘建业,杨闯,熊智,赖际舟,熊骏. 无人机类脑吸引子神经网络导航技术. 导航定位与授时. 2019(05): 52-60 . 百度学术
    26. 韩昆,吴德伟,来磊,杨林. 自主导航条件下网格细胞放电模型. 电子科技大学学报. 2019(05): 711-716 . 百度学术
    27. 丛明,邹强,刘冬,杜宇. 定位细胞认知机理启发的机器人导航研究综述. 机械工程学报. 2019(23): 1-12 . 百度学术
    28. 邹强,丛明,刘冬,杜宇. 仿鼠脑海马的机器人地图构建与路径规划方法. 华中科技大学学报(自然科学版). 2018(12): 83-88 . 百度学术
    29. 吴德伟,何晶,韩昆,李卉. 无人作战平台认知导航及其类脑实现思想. 空军工程大学学报(自然科学版). 2018(06): 33-38 . 百度学术

    其他类型引用(29)

  • 加载中
  • 图(8) / 表(2)
    计量
    • 文章访问数:  2256
    • HTML全文浏览量:  353
    • PDF下载量:  724
    • 被引次数: 58
    出版历程
    • 收稿日期:  2016-10-09
    • 录用日期:  2017-02-21
    • 刊出日期:  2018-02-20

    目录

      /

      返回文章
      返回