2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于凸优化改进的相机全局位置估计方法

谢理想 万刚 曹雪峰 王庆贺 王龙

谢理想, 万刚, 曹雪峰, 王庆贺, 王龙. 基于凸优化改进的相机全局位置估计方法. 自动化学报, 2018, 44(3): 506-516. doi: 10.16383/j.aas.2018.c160639
引用本文: 谢理想, 万刚, 曹雪峰, 王庆贺, 王龙. 基于凸优化改进的相机全局位置估计方法. 自动化学报, 2018, 44(3): 506-516. doi: 10.16383/j.aas.2018.c160639
XIE Li-Xiang, WAN Gang, CAO Xue-Feng, WANG Qing-He, WANG Long. An Improved Method for Camera Location Estimation Through Convex Optimization. ACTA AUTOMATICA SINICA, 2018, 44(3): 506-516. doi: 10.16383/j.aas.2018.c160639
Citation: XIE Li-Xiang, WAN Gang, CAO Xue-Feng, WANG Qing-He, WANG Long. An Improved Method for Camera Location Estimation Through Convex Optimization. ACTA AUTOMATICA SINICA, 2018, 44(3): 506-516. doi: 10.16383/j.aas.2018.c160639

基于凸优化改进的相机全局位置估计方法

doi: 10.16383/j.aas.2018.c160639
基金项目: 

国家自然科学基金 4110143

国家自然科学基金 41301428

地理信息工程国家重点实验室开放基金 SKLGIE2016-M-3-4

详细信息
    作者简介:

    谢理想 解放军信息工程大学硕士研究生.主要研究方向为计算机视觉和三维重建.E-mail:xiejake8@gmail.com

    曹雪峰 解放军信息工程大学讲师.2012年获得解放军信息工程大学地图制图学与地理信息系统专业博士学位.主要研究方向为点云三维重建、同时定位与成图.E-mail:cxfchxy@163.com

    王庆贺 解放军信息工程大学硕士研究生.主要研究方向为无人机智能控制, 多无人机协同.E-mail:dcn_ing@163.com

    王龙 国防信息学院助教.分别于2012年和2015年获得解放军信息工程大学指挥自动化专业学士学位和地图学与地理信息工程专业硕士学位.主要研究方向为数据挖掘, 大数据分析, 数据可视化.E-mail:17762486890@163.com

    通讯作者:

    万刚 解放军信息工程大学教授.2006年获得解放军信息工程大学地图制图学与地理信息系统专业博士学位.主要研究方向为无人机测绘, 虚拟地理环境.本文通信作者.E-mail:casper_51@163.com

An Improved Method for Camera Location Estimation Through Convex Optimization

Funds: 

National Natural Science Foundation of China 4110143

National Natural Science Foundation of China 41301428

Open Research Fund of State Key Laboratory of Geographical Information Engineering SKLGIE2016-M-3-4

More Information
    Author Bio:

    Master student at PLA Information Engineering University. His research interest covers computer vision and 3D reconstruction

    Lecturer at PLA Information Engineering University. He received his Ph. D. degree in cartography and GIS from PLA Information Engineering University in 2012. His research interest covers point cloud 3D reconstruction, simultaneous localization, and mapping

    Master student at PLA Information Engineering University. His research interest covers intelligent control of UAVs and cooperative for multiple UAVs

    Assistant lecturer at National Defense Information College. He received his bachelor degree and master degree from PLA Information Engineering University in 2012 and 2015, respectively. His research interest covers data mining, large data analysis, and data visualization

    Corresponding author: WAN Gang Professor at PLA Information Engineering University. He received his Ph. D. degree in cartography and GIS from PLA Information Engineering University in 2006. His research interest covers UAV surveying and mapping, virtual geographic environment. Corresponding author of this paper
  • 摘要: 相机全局位置估计作为运动恢复结构算法(Structure from motion,SfM)中的核心内容一直以来都是计算机视觉领域的研究热点.现有相机全局位置估计方法大多对外点敏感,在处理大规模、无序图像集时表现的尤为明显.增量式SfM中的迭代优化步骤可以剔除大部分的误匹配从而降低外点对估计结果的影响,而全局式SfM中没有有效地剔除误匹配的策略,估计结果受外点影响较大.针对这种情况,本文提出一种改进的相机全局位置估计方法:首先,结合极线约束提出一种新的对误匹配鲁棒的相对平移方向估计算法,减少相对平移方向估计结果中存在的外点;然后,引入平行刚体理论提出一种新的预处理方法将相机全局位置估计转化为一个适定性问题;最后,在此基础上构造了一个对外点鲁棒的凸优化线性估计模型,对模型解算获取相机位置估计全局最优解.本文方法可以很好地融合到当下的全局式SfM流程中.与现有典型方法的对照实验结果表明:在处理大规模、无序图像时,本文方法能显著提高相机全局位置估计的鲁棒性,并保证估计过程的高效性和估计结果的普遍精度.
    1)  本文责任编委 贾云得
  • 图  1  融合本文改进的全局式SfM算法流程图

    Fig.  1  The processing pipeline of global SfM fusion our modifying

    图  2  本文改进的相对平移方向估计算法流程

    Fig.  2  The processing pipeline of relative translation estimation based on our modifying

    图  3  图像之间的极线关系

    Fig.  3  Epipolar relationship between image pairs

    图  4  相对平移方向和相机全局位置

    Fig.  4  Relative translation direction and cameras' global position

    图  5  平行刚体示例

    Fig.  5  An example of parallel rigid

    图  11  利用本文算法对8组公开数据集处理获取的场景三维稀疏结构

    Fig.  11  The experimental result with 8 groups of datasets based on our method

    图  6  相机全局位置散点图(数据Vienna, 相机个数821)

    Fig.  6  Global location of cameras represented by scatter diagram

    图  7  BA优化后本文同1DSfM实验结果平均值比较图

    Fig.  7  Comparison result of mean between our method and 1DSfM after BA

    图  8  BA优化后本文同文献[20]实验结果中位数比较图

    Fig.  8  Comparison result of median between our method and [20] after BA

    图  9  BA优化前本文同1DSfM实验结果中位数比较图

    Fig.  9  Comparison result of median between our method and 1DSfM before BA

    图  10  BA优化后本文同1DSfM实验结果中位数比较图

    Fig.  10  Comparison result of median between our method and 1DSfM after BA

    表  1  本文方法同1DSfM、文献[20]处理精度比较

    Table  1  Comparison of accuracy: our method、1DSfM and [20]

    数据本文方法 1DSfM [23] [20]
    初始 BA后 初始 BA后 BA后
    名称 尺寸(像素) 数目 $\widetilde{x}$ $\overline{x}$ $N$ $\widetilde{x}$ $\overline{x}$ $\widetilde{x}$ $N$ $\widetilde{x}$ $\overline{x}$ $N$ $\widetilde{x}$
    Tower 1 600×1 064 1 576 3.4 19 461 1.3 22 11 414 1.0 40 306 44
    Montreal 1 349×1 600 2 298 0.6 1 454 0.4 1 2.5 427 0.4 1 357 9.8
    Madrid 1 600×1 081 1 344 2.3 5 337 1.0 4 9.9 291 0.5 70 240 18
    Piazza 1 600×2 390 2 251 1.8 5 318 1.0 3 3.1 308 2.1 200 93 16
    Yorkminster 1 600×2 129 3 368 2.7 6 406 1.4 4 3.4 401 0.1 500 345 6.7
    Library 1 067×1 600 2 550 2.3 6 321 0.7 5 2.5 295 0.4 1 271 1.4
    Vienna 1 600×2 400 6 288 6.5 16 821 2.2 10 6.6 770 0.4 2E4 652 12
    Alamo 1 600×2 133 2 915 0.5 2 554 0.4 2 1.1 529 0.3 2E7 422 2.4
    下载: 导出CSV

    表  2  本文方法同1DSfM、文献[20]、Bundler处理时间比较

    Table  2  Comparison of efficiency: our method、1DSfM、Bundler and [20]

    数据 本文方法 1DSfM [23] [20] Bundler
    $T_R$ $T_O$ $T_S$ $T_{BA}$ $\Sigma$ $T_R$ $T_O$ $T_S$ $T_{BA}$ $\Sigma$ $\Sigma$ $\Sigma$
    Tower 1 29 9 351 390 9 14 55 606 648 264 1 900
    Montreal 2 66 24 352 444 17 22 75 1 135 1 249 424 2 710
    Madrid 1 12 7 158 178 15 8 20 201 244 139 1 315
    Piazza 1 14 11 95 121 14 9 35 191 249 138 1 287
    Yorkminster 1 31 12 128 172 11 18 93 777 899 394 3 225
    Library 1 13 6 199 219 9 13 54 392 468 220 3 807
    Vienna 6 344 50 1 206 1 606 98 60 144 2 837 3 139 2 273 10 276
    Alamo 4 153 49 847 1 053 56 29 73 752 910 1 403 1 654
    下载: 导出CSV
  • [1] Triggs B, McLauchlan P, Hartley R I, Fitzgibbon A W. Bundle adjustment-a modern synthesis. Vision Algorithms: Theory and Practice: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1999. 298-372 doi: 10.1007/3-540-44480-7
    [2] Zhang Z Y, Shan Y. Incremental Motion Estimation Through Local Bundle Adjustment. Technical Report MSR-TR-01-54, Microsoft Research, Redmond, WA, 2001.
    [3] Snavely N, Seitz S M, Szeliski R. Photo tourism:exploring photo collections in 3D. ACM Transactions on Graphics, 2006, 25(3):835-846 doi: 10.1145/1141911
    [4] Snavely N, Seitz S M, Szeliski R. Skeletal graphs for efficient structure from motion. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587678
    [5] Havlena M, Torii A, Knopp J, Pajdla T. Randomized structure from motion based on atomic 3D models from camera triplets. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 2874-2881 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5206677
    [6] Furukawa Y, Curless B, Seitz S M, Szeliski R. Towards internet-scale multi-view stereo. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 1434-1441 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5539802
    [7] Sinha S N, Steedly D, Szeliski R. A multi-stage linear approach to structure from motion. In: Proceedings of the 11th European Conference on Trends and Topics in Computer Vision. Berlin, Heidelberg: Springer, 2010. 267-281 doi: 10.1007%2F978-3-642-35740-4_21
    [8] Kneip L, Chli M, Siegwart R Y. Robust real-time visual odometry with a single camera and an IMU. In: Proceedings of the 22nd British Machine Vision Conference. Scotland, UK: BMVA, 2011. doi: 10.3929/ethz-a-010025746
    [9] Tomasi C, Kanade T. Shape and motion from image streams under orthography:a factorization method. International Journal of Computer Vision, 1992, 9(2):137-154 doi: 10.1007/BF00129684
    [10] Moulon P, Monasse P, Marlet R. Global fusion of relative motions for robust, accurate and scalable structure from motion. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, AU: IEEE, 2013. 3248-3255 http://ieeexplore.ieee.org/document/6751515/
    [11] Govindu V M. Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004. 684-691 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1315098
    [12] Martinec D, Pajdla T. Robust rotation and translation estimation in multiview reconstruction. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA: IEEE, 2007. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4270140
    [13] Hartley R, Aftab K, Trumpf J. L1 rotation averaging using the Weiszfeld algorithm. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2011. 3041-3048 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5995745
    [14] Fredriksson J, Olsson C. Simultaneous multiple rotation averaging using lagrangian duality. In: Proceedings of the 11th Asian Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012. 245-258 doi: 10.1007%2F978-3-642-37431-9_19
    [15] Chatterjee A, Govindu V M. Efficient and robust large-scale rotation averaging. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, AU: IEEE, 2013. 521-528 http://ieeexplore.ieee.org/document/6751174/
    [16] Brand M, Antone M, Teller S. Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem. In: Proceedings of the 8th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2004. 262-273 http://www.springerlink.com/content/0bx5vqf0688nxcw3
    [17] Arie-Nachimson M, Kovalsky S Z, Kemelmacher-Shlizerman I, Singer A, Basri R. Global motion estimation from point matches. In: Proceedings of the 2nd International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. Zurich, Switzerland: IEEE, 2012. 81-88 http://ieeexplore.ieee.org/document/6374980/
    [18] Sim K, Hartley R. Recovering camera motion using L minimization. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 1230-1237
    [19] Kahl F, Hartley R. Multiple-view geometry under the L-norm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9):1603-1617 doi: 10.1109/TPAMI.2007.70824
    [20] Govindu V M. Combining two-view constraints for motion estimation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, HI, USA: IEEE, 2001. 218-225 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=990963
    [21] Tron R, Vidal R. Distributed image-based 3-D localization of camera sensor networks. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 901-908 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5400405
    [22] Li H D. Multi-view structure computation without explicitly estimating motion. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010. 2777-2784
    [23] Wilson K, Snavely N. Robust global translations with 1DSfM. In: Proceedings of the 13th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2014. 61-75 doi: 10.1007%2F978-3-319-10578-9_5
    [24] Daubechies I, Devore R, Fornasier M, Güntürk C S. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 2010, 63(1):1-38 doi: 10.1002/cpa.v63:1
    [25] Andrew A M. Multiple view geometry in computer vision. Kybernetes, 2001, 30(9-10):1333-1341 http://www.robots.ox.ac.uk/~vgg/hzbook
    [26] Jiang N J, Cui Z P, Tan P. A global linear method for camera pose registration. In: Proceedings of the 2013 IEEE Conference on Computer Vision. Sydney, NSW: IEEE, 2013. 481-488 http://ieeexplore.ieee.org/document/6751169/
    [27] Whiteley W. A matroid on hypergraphs, with applications in scene analysis and geometry. Discrete & Computational Geometry, 1989, 4(1):75-95
    [28] Whiteley W. Parallel redrawing of configurations in 3-space. 1986.
    [29] Servatius B, Whiteley W. Constraining plane configurations in computer-aided design:combinatorics of directions and lengths. SIAM Journal on Discrete Mathematics, 1999, 12(1):136-153 doi: 10.1137/S0895480196307342
    [30] Eren T, Whiteley W, Belhumeur P N. Using angle of arrival (bearing) information in network localization. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, CA: IEEE, 2006. 4676-4681 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4177903
    [31] Eren T, Whiteley W, Morse A S, Belhumeur P N, Anderson B D O. Sensor and network topologies of formations with direction, bearing, and angle information between agents. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI: IEEE, 2003. 3064-3069 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1273093
    [32] Jackson B, Jordán T. Graph theoretic techniques in the analysis of uniquely localizable sensor networks. 2009.
    [33] Jacobs D J, Hendrickson B. An algorithm for two-dimensional rigidity percolation:the pebble game. Journal of Computational Physics, 1997, 137(2):346-365 doi: 10.1006/jcph.1997.5809
    [34] Kennedy R, Daniilidis K, Naroditsky O, Taylor C J. Identifying maximal rigid components in bearing-based localization. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, 2012. 194-201 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6386132
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  2373
  • HTML全文浏览量:  325
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 录用日期:  2017-01-16
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回