2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超像素的均值-均方差暗通道单幅图像去雾方法

汪云飞 冯国强 刘华伟 赵搏欣

汪云飞, 冯国强, 刘华伟, 赵搏欣. 基于超像素的均值-均方差暗通道单幅图像去雾方法. 自动化学报, 2018, 44(3): 481-489. doi: 10.16383/j.aas.2018.c160594
引用本文: 汪云飞, 冯国强, 刘华伟, 赵搏欣. 基于超像素的均值-均方差暗通道单幅图像去雾方法. 自动化学报, 2018, 44(3): 481-489. doi: 10.16383/j.aas.2018.c160594
WANG Yun-Fei, FENG Guo-Qiang, LIU Hua-Wei, ZHAO Bo-Xin. Superpixel-based Mean and Mean Square Deviation Dark Channel for Single Image Fog Removal. ACTA AUTOMATICA SINICA, 2018, 44(3): 481-489. doi: 10.16383/j.aas.2018.c160594
Citation: WANG Yun-Fei, FENG Guo-Qiang, LIU Hua-Wei, ZHAO Bo-Xin. Superpixel-based Mean and Mean Square Deviation Dark Channel for Single Image Fog Removal. ACTA AUTOMATICA SINICA, 2018, 44(3): 481-489. doi: 10.16383/j.aas.2018.c160594

基于超像素的均值-均方差暗通道单幅图像去雾方法

doi: 10.16383/j.aas.2018.c160594
基金项目: 

国家自然科学基金 61379104

详细信息
    作者简介:

    冯国强 博士, 空军工程大学无人机运用工程系讲师.主要研究方向为光电信息处理.E-mail:fgq8787@163.com

    刘华伟 博士, 空军工程大学无人机运用工程系副教授.主要研究方向为图像处理, 计算机视觉与模式识别.E-mail:liuhuawei001@21cn.com

    赵搏欣 博士, 空军工程大学无人机运用工程系讲师.主要研究方向为图像处理与无人机自主定位.E-mail:boxin.zhao@nudt.edu.cn

    通讯作者:

    汪云飞 博士, 空军工程大学无人机运用工程系讲师.主要研究方向为图像分割与增强.本文通信作者.E-mail:wyfpost@163.com

Superpixel-based Mean and Mean Square Deviation Dark Channel for Single Image Fog Removal

Funds: 

National Natural Science Foundation of China 61379104

More Information
    Author Bio:

    Ph. D., lecturer in the Department of UAV Application Engineering, Air Force Engineering University. His main research interest is optical-electronic information processing

    Ph. D., associate professor in the Department of UAV Application Engineering, Air Force Engineering University. His research interest covers image processing, computer vision, and pattern recognition

    Ph. D., lecturer in the Department of UAV Application Engineering, Air Force Engineering University. Her research interest covers image processing and UAV autonomous positioning

    Corresponding author: WANG Yun-Fei Ph. D., lecturer in the Department of UAV Application Engineering, Air Force Engineering University. His research interest covers image segmentation and enhancement. Corresponding author of this paper
  • 摘要: 雾、霾天气会引起图像严重降质.本文假设局部雾浓度恒定,认为暗通道优先的有效性随景深递增呈指数衰减,其比例大小可间接反映雾浓度高低.在此基础上提出一种基于超像素的均值-均方差暗通道单幅图像去雾算法.首先通过超像素分割得到景深恒定的小区域,接着在每个区域内计算均值-均方差暗通道:用均值替代最小值抑制景深突变处的光晕效应,同时采用均方差对其进行修正纠正景深无限远处的偏色问题,由此生成的透射率在超像素内保持不变且更加精细、准确.实验结果表明该算法在雾浓度较大时能够显著提高大景深图像的可见性.
    1)  本文责任编委 黄庆明
  • 图  1  暗通道与直方图

    Fig.  1  The dark channel and histogram

    图  2  透射率比较

    Fig.  2  The comparison of transmittance

    图  3  不同算法去雾结果

    Fig.  3  The dehaze results of different algorithms

    图  4  不同算法光晕效应

    Fig.  4  The halo effect of different algorithm

    图  5  亮度调整

    Fig.  5  Improve light

    表  1  光晕效应强度

    Table  1  The intensity of halo effect

    图像名称(分辨率) 原图 DCP Tarel SMMD
    大山(551$\, \times\, $416) 0.578 0.448 0.567 0.321
    黄山(184$\, \times\, $256) 0.657 0.425 0.575 0.262
    下载: 导出CSV

    表  2  暗通道比例

    Table  2  The ratio of dark channel

    图像名称(分辨率) 原图(%) DCP (%) Tarel (%) SMMD (%) (参数取值)
    大山(551$\, \times\, $832) 0.04 59.04 17.96 96.69 (${T}=3$, $n=64$, $k=1$)
    黄山(739$\, \times\, $1 024) 18.57 38.29 41.72 59.56 (${T}=2$, $n=64$, $k=1$)
    香港(431$\, \times\, $800) 2.18 60.97 34.12 82.83 (${T}=2$, $n=64$, $k=1$)
    院子(693$\, \times\, $711) 37.27 51.29 75.11 78.33 (${T}=2$, $n=64$, $k=0$)
    黄山(369$\, \times\, $1 024) 30.52 67.52 70.96 89.05 (${T}=2$, $n=64$, $k=1$)
    下载: 导出CSV
  • [1] Choi L K, You J, Bovik A C. Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Transactions on Image Processing, 2015, 24(11):3888-3901 doi: 10.1109/TIP.2015.2456502
    [2] Tan R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8 https://www.computer.org/csdl/proceedings/cvpr/2008/2242/00/04587643-abs.html
    [3] Pan X Y, Xie F Y, Jiang Z G, Yin J H. Haze removal for a single remote sensing image based on deformed haze imaging model. IEEE Signal Processing Letters, 2015, 22(10):1806-1810 doi: 10.1109/LSP.2015.2432466
    [4] Li Z G, Zheng J H. Edge-preserving decomposition-based single image haze removal. IEEE Transactions on Image Processing, 2015, 24(12):5432-5441 doi: 10.1109/TIP.2015.2482903
    [5] Ancuti C O, Ancuti C. Single image dehazing by multi-scale fusion. IEEE Transactions on Image Processing, 2013, 22(8):3271-3282 doi: 10.1109/TIP.2013.2262284
    [6] 南栋, 毕笃彦, 马时平, 何林远, 娄小龙.基于景深约束的单幅雾天图像去雾算法.电子学报, 2015, 43(3):500-504 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb201503013

    Nan Dong, Bi Du-Yan, Ma Shi-Ping, He Lin-Yuan, Lou Xiao-Long. Single image dehazing method based on scene depth constraint. Acta Electronica Sinica, 2015, 43(3):500-504 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dianzixb201503013
    [7] 胡伟, 袁国栋, 董朝, 疏学明.基于暗通道优先的单幅图像去雾新方法.计算机研究与发展, 2010, 47(12):2132-2140 http://www.cqvip.com/QK/94913X/201012/36262101.html

    Hu Wei, Yuan Guo-Dong, Dong Zhao, Shu Xue-Ming. Improved single image dehazing using dark channel prior. Journal of Computer Research and Development, 2010, 47(12):2132-2140 http://www.cqvip.com/QK/94913X/201012/36262101.html
    [8] Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3):Article No.72 http://dl.acm.org/citation.cfm?id=1360671
    [9] Kratz L, Nishino K. Factorizing scene albedo and depth from a single foggy image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1701-1708 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5459382
    [10] Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2201-2208 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5459251
    [11] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353 doi: 10.1109/TPAMI.2010.168
    [12] He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409 doi: 10.1109/TPAMI.2012.213
    [13] Zhu S, Cao D H, Jiang S X, Wu Y B, Hu P. Fast superpixel segmentation by iterative edge refinement. Electronics Letters, 2015, 51(3):230-232 doi: 10.1049/el.2014.3379
    [14] Shi J B, Du Y F, Wang W G, Li X L. Lazy random walks for superpixel segmentation. IEEE Transactions on Image Processing, 2014, 23(4):1451-1462 doi: 10.1109/TIP.2014.2302892
    [15] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282 doi: 10.1109/TPAMI.2012.120
    [16] Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):898-916 doi: 10.1109/TPAMI.2010.161
    [17] Neubert P, Protzel P. Superpixel benchmark and comparison[Online], available: http://www.tu-chemnitz.de/etit/proaut/forschung/superpixel.html, May 3, 2012
    [18] 汪云飞, 毕笃彦, 刘华伟, 刘凌, 赵晓林.一种局部受限的规则聚类超像素算法.西安电子科技大学学报(自然科学版), 2016, 43(3):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xadzkjdx201603017

    Wang Yun-Fei, Bi Du-Yan, Liu Hua-Wei, Liu Ling, Zhao Xiao-Lin. Locally-restricted regular clustering superpixel algorithm. Journal of Xidian University (Natural Science), 2016, 43(3):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xadzkjdx201603017
    [19] Noh S W, Ahn B, Kweon I S. Haze removal on superpixel domain. In: Proceedings of the 10th IEEE International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, Korea: IEEE, 2013. 597-598 http://ieeexplore.ieee.org/document/6677400/
    [20] Singh G. Evaluation of various digital image fog removal algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 7(3):7536-7540
    [21] 李大鹏, 禹晶, 肖创柏.图像去雾的无参考客观质量评测方法.中国图象图形学报, 2011, 16(9):1753-1757 http://d.wanfangdata.com.cn/Periodical_zgtxtxxb-a201109027.aspx

    Li Da-Peng, Yu Jing, Xiao Chuang-Bai. No-reference quality assessment method for defogged images. Journal of Image and Graphics, 2011, 16(9):1753-1757 http://d.wanfangdata.com.cn/Periodical_zgtxtxxb-a201109027.aspx
    [22] Drago F, Myszkowski K, Annen T, Chiba N. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum, 2003, 22(3):419-426 doi: 10.1111/cgf.2003.22.issue-3
    [23] 吴迪, 朱青松.图像去雾的最新研究进展.自动化学报, 2015, 41(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml

    Wu Di, Zhu Qing-Song. The latest research progress of image dehazing. Acta Automatica Sinica, 2015, 41(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml
    [24] 陈书贞, 任占广, 练秋生.基于改进暗通道和导向滤波的单幅图像去雾算法.自动化学报, 2016, 42(3):455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml

    Chen Shu-Zhen, Ren Zhan-Guang, Lian Qiu-Sheng. Single image dehazing algorithm based on improved dark channel prior and guided filter. Acta Automatica Sinica, 2016, 42(3):455-465 http://www.aas.net.cn/CN/abstract/abstract18833.shtml
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2693
  • HTML全文浏览量:  389
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 录用日期:  2017-01-04
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回