[1]
|
Moshtaghpour A, Jacques L, Cambareri V, Degraux K, De Vleeschouwer C. Consistent basis pursuit for signal and matrix estimates in quantized compressed sensing. IEEE Signal Processing Letters, 2016, 23(1):25-29 doi: 10.1109/LSP.2015.2497543
|
[2]
|
Zhao W Q, Beach T H, Rezgui Y. Efficient least angle regression for identification of linear-in-the-parameters models. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017, 473(2198):Article No.20160775 doi: 10.1098/rspa.2016.0775
|
[3]
|
Lee H C, Song B, Kim J S, Jung J J, Li H H, Mutic S, et al. An efficient iterative CBCT reconstruction approach using gradient projection sparse reconstruction algorithm. Oncotarget, 2016, 7(52):87342-87350 http://europepmc.org/abstract/MED/27894103
|
[4]
|
许志强.压缩感知.中国科学:数学, 2012, 42(9):865-877 https://www.wenkuxiazai.com/doc/3851fb1eff00bed5b9f31d8b.htmlXu Zhi-Qiang. Compressed sensing:a survey. Science China:Mathematics, 2012, 42(9):865-877 https://www.wenkuxiazai.com/doc/3851fb1eff00bed5b9f31d8b.html
|
[5]
|
方红, 杨海蓉.贪婪算法与压缩感知理论.自动化学报, 2011, 37(12):1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtmlFang Hong, Yang Hai-Rong. Greedy algorithms and compressed sensing. Acta Automatica Sinica, 2011, 37(12):1413-1421 http://www.aas.net.cn/CN/abstract/abstract17639.shtml
|
[6]
|
Cohen A, Dahmen W, DeVore R. Orthogonal matching pursuit under the restricted isometry property. Constructive Approximation, 2017, 45(1):113-127 doi: 10.1007/s00365-016-9338-2
|
[7]
|
Do T T, Gan L, Nguyen N, Tran T D. Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: Proceedings of the 42th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2008. 581-587
|
[8]
|
Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316 doi: 10.1109/JSTSP.2010.2042412
|
[9]
|
Lee D. MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 2016, 20(10):2115-2118 doi: 10.1109/LCOMM.2016.2594059
|
[10]
|
Davenport M A, Needell D, Wakin M B. Signal space CoSaMP for sparse recovery with redundant dictionaries. IEEE Transactions on Information Theory, 2013, 59(10):6820-6829 doi: 10.1109/TIT.2013.2273491
|
[11]
|
Giryes R, Elad M. RIP-based near-oracle performance guarantees for SP, CoSaMP, and IHT. IEEE Transactions on Signal Processing, 2012, 60(3):1465-1468 doi: 10.1109/TSP.2011.2174985
|
[12]
|
Ramirez-Giraldo J C, Trzasko J, Leng S, Yu L, Manduca A, McCollough C H. Nonconvex prior image constrained compressed sensing (NCPICCS):theory and simulations on perfusion CT. Medical Physics, 2011, 38(4):2157-2167 doi: 10.1118/1.3560878
|
[13]
|
Babaie-Kafaki S, Ghanbari R. A hybridization of the Hestenes-Stiefel and Dai-Yuan conjugate gradient methods based on a least-squares approach. Optimization Methods and Software, 2015, 30(4):673-681 doi: 10.1080/10556788.2014.966825
|
[14]
|
Shaw C B, Prakash J, Pramanik M, Yalavarthy P K. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography. Journal of Biomedical Optics, 2013, 18(8):Article No.80501 doi: 10.1117/1.JBO.18.8.080501
|
[15]
|
Paige C C, S M A. LSQR:an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 1982, 8(1):43-71 doi: 10.1145/355984.355989
|
[16]
|
Cichocki A, Zdunek R, Amari S I. Csiszár's divergences for non-negative matrix factorization: family of new algorithms. In: Proceedings of the 2006 International Conference on Independent Component Analysis and Blind Signal Separation. Charleston, SC, USA: Springer, 2006. 32-39
|
[17]
|
Cichocki A, Amari S I. Families of Alpha-Beta-and Gamma-divergences:flexible and robust measures of similarities. Entropy, 2010, 12(6):1532-1568 doi: 10.3390/e12061532
|
[18]
|
余南南, 邱天爽.压缩传感条件下红外和可见光图像融合技术的研究.信号处理, 2012, 28(5):692-698 http://cdmd.cnki.com.cn/Article/CDMD-10183-2008126444.htmYu Nan-Nan, Qiu Tian-Shuang. Fusion technology of infrared and visible images in compressive sensing. Signal Processing, 2012, 28(5):692-698 http://cdmd.cnki.com.cn/Article/CDMD-10183-2008126444.htm
|
[19]
|
王琴, 沈远彤.基于压缩感知的多尺度最小二乘支持向量机.自动化学报, 2016, 42(4):631-640 http://www.aas.net.cn/CN/abstract/abstract18849.shtmlWang Qin, Shen Yuan-Tong. Multi-scale least squares support vector machine using compressive sensing. Acta Automatica Sinica, 2016, 42(4):631-640 http://www.aas.net.cn/CN/abstract/abstract18849.shtml
|