2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变换函数与填充函数的模糊粒子群优化算法

吕柏权 张静静 李占培 刘廷章

吕柏权, 张静静, 李占培, 刘廷章. 基于变换函数与填充函数的模糊粒子群优化算法. 自动化学报, 2018, 44(1): 74-86. doi: 10.16383/j.aas.2018.c160547
引用本文: 吕柏权, 张静静, 李占培, 刘廷章. 基于变换函数与填充函数的模糊粒子群优化算法. 自动化学报, 2018, 44(1): 74-86. doi: 10.16383/j.aas.2018.c160547
LV Bai-Quan, ZHANG Jing-Jing, LI Zhan-Pei, LIU Ting-Zhang. Fuzzy Partical Swarm Optimization Based on Filled Function and Transformation Function. ACTA AUTOMATICA SINICA, 2018, 44(1): 74-86. doi: 10.16383/j.aas.2018.c160547
Citation: LV Bai-Quan, ZHANG Jing-Jing, LI Zhan-Pei, LIU Ting-Zhang. Fuzzy Partical Swarm Optimization Based on Filled Function and Transformation Function. ACTA AUTOMATICA SINICA, 2018, 44(1): 74-86. doi: 10.16383/j.aas.2018.c160547

基于变换函数与填充函数的模糊粒子群优化算法

doi: 10.16383/j.aas.2018.c160547
基金项目: 

国家自然科学基金 61273190

详细信息
    作者简介:

    张静静  上海大学机电工程与自动化学院硕士研究生.主要研究方向为非线性控制理论, 智能优化算法.E-mail:jingjiangzhang25@163.com

    李占培  上海大学机电工程与自动化学院博士研究生.主要研究方向为复杂系统的建模和控制, 建筑系统节能和控制.E-mail:woshilizhanpei@126.com

    刘廷章  上海大学机电工程与自动化学院教授.1996年获得西安交通大学机械工程博士学位.主要研究方向为复杂系统的建模和控制, 建筑系统节能和控制.E-mail:liutzh@stafi.shu.edu.cn

    通讯作者:

    吕柏权  上海大学机电工程与自动化学院副教授.1997年获得清华大学热能工程系博士学位.主要研究方向为计算智能, 非线性系统控制.本文通信作者.E-mail:lbq123188@aliyun.com

Fuzzy Partical Swarm Optimization Based on Filled Function and Transformation Function

Funds: 

National Natural Science Foundation of China 61273190

More Information
    Author Bio:

     Master student at the School of Mechatronic Engineering and Automation, Shanghai University. Her research interest covers nonlinear control theory and intelligent optimization algorithm

     Ph. D. candidate at the School of Mechatronic Engineering and Automation, Shanghai University. His research interest covers modeling and control for complex system, energy-saving and control for building system

     Professor at the School of Mechatronic Engineering and Automation, Shanghai University. He received his Ph. D. degree in mechanical engineering from Xi0an Jiaotong University in 1996. His research interest covers modeling and control for complex system, energysaving and control for building system

    Corresponding author: LV Bai-Quan  Associate professor at the School of Mechatronic Engineering and Automation, Shanghai University. He received his Ph. D. degree in thermal engineering from Tsinghua University in 1997. His research interest covers computational intelligence and nonlinear system control. Corresponding author of this paper
  • 摘要: 本文提出了一种基于变换函数与填充函数的模糊粒子群优化算法(Fuzzy partical swarm optimization based on filled function and transformation function,FPSO-TF).以基于不同隶属度函数的多回路模糊控制系统为基础,进一步结合变换函数与填充函数,使该算法减少了陷入局部最优的可能,又可以跳出局部极小值点至更小的点,快速高效地搜索到全局最优解.最后采用基准函数对此算法进行测试,并与几种不同类型的改进算法进行对比分析,验证了此算法的有效性与优越性.
    1)  本文责任编委 张毅
  • 图  1  单回路控制系统

    Fig.  1  The single loop control system

    图  2  变换函数图

    Fig.  2  Transformation function curve

    图  3  目标函数平面示意图

    Fig.  3  Objective function diagram

    图  4  $F4$变换前后的曲线图即$F4$和$T(1,0,F4)$

    Fig.  4  The curves of $F4$ before and after transformation: $F4$ and $T(1,0,F4)$

    图  5  $F11$变换前后的曲线图即$F11$和$T(1,0,F11)$

    Fig.  5  The stereogram of $F11$ before and after transformation: $F11$ and $T(1,0,F11)$

    图  6  多回路模糊控制系统框图

    Fig.  6  A multi-loop distributed fuzzy control system

    图  7  不同宽度的隶属度函数

    Fig.  7  The membership functions with different width

    图  8  多回路控制系统关系图

    Fig.  8  The relationship with all subsystems

    图  9  填充函数示意图

    Fig.  9  Graph of the filled function

    图  10  FPSO-TF算法流程图

    Fig.  10  Flowchart of FPSO-TF algorithm

    图  11  (a) $F$1, (b) $F$2, (c) $F$3, (d) $F$4, (e) $F$5, (f) $F$6 (这里曲线在每次迭代时都加78.33233140745), (g) $F$7, (h) $F$8, (i) $F$9, (j) $F$10, (k) $F$11, (l) $F$12 (这里曲线在每次迭代时都加0.000381827), (m) $F$13, (n) $F$14和(o) $F$15的收敛曲线

    Fig.  11  Convergence progress of the FPSO-TF on (a) $F$1, (b) $F$2, (c) $F$3, (d) $F$4, (e) $F$5, (f) $F$6 (where curves are obtained by subtracting 78.33233140745 from the true value of $F$6 for each iteration), (g) $F$7, (h) $F$8, (i) $F$9, (j) $F$10, (k) $F$11, (l) $F$12 (where curves are obtained by subtracting 0.000381827 from the true value of $F$12 for each iteration), (m) $F13$, (n) $F14$ and (o) $F15$

    表  1  测试函数

    Table  1  Test functions

    测试函数 维数 可行域 最优值/最优点
    $f_1=\sum\limits_{i=1}^n(x_i^2-10\cos(2\pi x_i)+10)$ 30 $[-5.12,5.12]^D$ 0.0/0, 0, $\cdots$, 0
    $f_2=-20\exp(-0.2\sqrt{\sum\limits_{i=1}^n\frac{x_i^2}{n}})-\exp(\sum\limits_{i=1}^n\frac{\cos(2\pi x_i)}{n})+20+\exp(1)$ 30 $[-32,32]^D$ 0.0/0, 0, $\cdots$, 0
    $f_3=\sum\limits_{i=1}^n\frac{x_i^2}{4\,000}-\prod\limits_{i=1}^n\cos(\frac{x_i}{\sqrt{i}})+1$ 30 $[-600,600]^D$ 0.0/0, 0, $\cdots$, 0
    $f_4=\frac{\pi}{n}(10\sin^2(\pi y_1)+(y_n-1)^2+\sum\limits_{i=1}^{n-1}(y_i-1)^2(1+10\sin^2(\pi y_{i+1}))) y_i=1+\frac{(1+x_i)}{4}$ 30 $[-50,50]^D$ $ 0.0/-1,\ -1, \cdots,\ -1 $
    $ f_5=\frac{1}{10}(\sin^2(3\pi x_1)+(x_n-1)^2(1+\sin^2(2\pi x_n))+ \quad \sum\limits_{i=1}^{n-1}(x_n-1)^2(1+\sin^2(3\pi x_{i+1})))$ 30 $[-50,50]^D$ 0.0/1, 1, $\cdots$, 1
    $f_6=\sum\limits_{i=1}^n{\frac{(x_i^4-16x_i^2+5x_i)}{n}}$ 30 $[-5,5]^D$ $-78.3323/-2.90353,-2.90353, \cdots,-2.90353$
    $f_7=\sum\limits_{i=1}^{n-1}\left({100(x_i^2-x_{i+1})^2+(x_i-1)^2}\right)$ 30 $[-5,10]^D$ 0.0/1, 1, $\cdots$, 1
    $f_8=\sum\limits_{i=1}^nx_i^2$ 30 $[-100,100]^D$ 0.0/0, 0, $\cdots$, 0
    $f_9=\sum\limits_{i=1}^nx_i^4$ 30 $[-1.28,1.28]^D$ 0.0/0, 0, $\cdots$, 0
    $f_{10}=\sum\limits_{i=1}^n\left[{\sum\limits_{j=1}^i x_j}\right]^2$ 30 $[-100,100]^D$ 0.0/0, 0, $\cdots$, 0
    $f_{11}=\sum\limits_{i=1}^n\left[\sum\limits_{k=0}^{k\max}\left(a^k\cos(2\pi b^k(x_i+0.5))\right)\right]- \quad n\sum\limits_{k=0}^{k\max}\left(a^k\cos(2\pi b^k0.5)\right) a=0.5,b=3,k\max=20$ 30 $[-0.5,0.5]^D$ 0.0/0, 0, $\cdots$, 0
    $f_{12}=418.9829\times n-\sum\limits_{i=1}^nx_i\sin(\sqrt{|x_i|})$ 30 $[-500,500]^D$ 0.000381827/420.97, 420.97, $\cdots$, 420.97
    $f_{13}=\sum\limits_{i=1}^ni\times x_i^4+{\rm Random}(0,1)$ 30 $[-1.28,1.28]^D$ 0.0/0, 0, $\cdots$, 0
    $f_{14}=\frac{\pi}{n}\Big(10\sin^2(\pi y_1)+(y_n-1)^2+\sum\limits_{i=1}^{n-1}(y_i-1)^2(1+ \quad 10\sin^2(\pi y_{i+1}))\Big) +\sum\limits_{i=1}^nu_i(x_i,10,100,4), \\ y_i=1+\frac{1+x_i}{4} u_i(x_i,a,k,m)=\left\{\!\!\!\begin{array}{ll} k(x_i-a)^m, & x_i>a \\ 0, &-a \leq x_i \leq a \\ k(-x_i-a)^m, & x_i <a \end{array}\right. $ 30 $[-50,50]^D$ $0.0/-1,-1,\cdots,-1 $
    $f_{15}=\frac{1}{10}(\sin^2(3\pi x_1)+(x_n-1)^2(1+\sin^2(2\pi x_n))+\quad \sum\limits_{i=1}^{n-1}(x_n-1)^2(1+\sin^2(3\pi x_{i+1})))+\sum\limits_{i=1}^nu_i(x_i,5,100,4)$ 30 $[-50,50]^D$ 0.0/1, 1, $\cdots$, 1
    下载: 导出CSV

    表  2  参数初值

    Table  2  The initial values of the parameters

    测试函数 $d_1/d_2/d_3/d_4/d_5$ $\eta_1/\eta_2/\eta_3/\eta_4$ $a_1/R/N_\sigma$ $MN/TT/FMN$
    $F1 $ 1E-6/1E-18/30/1/12 2E-2/1E-4/1E-4/0.1 1E-3/-1/6 1 000/2 000/100
    $F2 $ 1E-4/1E-26/40/0.1/30 5E-3/1E-4/1E-5/0.1 1E-4/-1/5 5 000/8 000/100
    $F3 $ 1E-6/1E-15/25/0.3/18 1E-4/1E-3/1E-3/1E-2 1E-3/-1/3 15 000/9 000/60
    $F4$ 1E-4/1E-18/35/0.2/15 1.6/0.1/1E-5/0.1 1E-4/-1/5 12 000/20 000/100
    $F5 $ 1E-4/1E-18/35/0.05/18 1.4/1E-2/1E-5/0.1 1E-3/0/3 8 000/20 000/100
    $F6 $ 1E-5/1E-11/12/1/13 0.6/1E-4/1E-3/1E-2 1E-3/-1/5 1 000/2 000/60
    $F7 $ 1E-15/1E-16/19/0.2/10 1/1E-3/1E-4/1E-3 1E-3/-1/4 190 000/40 000/100
    $F8 $ 1E-5/1E-24/35/1/30 6E-2/1E-3/1E-4/6E-3 1E-4/-1/3 30 000/4 000/100
    $F9$ 1E-3/1E-18/25/1/25 3E-2/1E-4/1E-4/1E-3 1E-3/-1/5 8 000/5 000/60
    $F10$ 1E-9/1E-21/35/1/30 0.6/0.3/1E-4/0.8 1E-4/-1/5 50 000/250 000/130
    $F11$ 1E-9/1E-20/25/1/25 3E-3/1E-4/1E-3/1E-3 1E-4/-1/5 20 000/18 000/100
    $F12 $ 1E-6/1E-4/10/1/14 6E-4/1E-3/1E-5/0.1 1E-4/-1/5 300/1 000/60
    $F13$ 1E-15/1E-10/20/1/11 1/1E-3/1E-4/1E-2 1E-4/-1/10 80 000/6 000/60
    $F14 $ 1E-4/1E-18/35/0.2/15 1.5/0.1/1E-5/0.1 1E-4/-1/3 12 000/20 000/100
    $F15 $ 1E-4/1E-18/35/0.05/18 1.4/0.01/1E-5/0.1 1E-4/0/3 10 000/20 000/100
    下载: 导出CSV

    表  3  仿真结果

    Table  3  Results of simulation

    Functions Average value Best value Worst value Confidence interval N/30 CPU times (s) SA
    $F1 $ 0 0 0 0±0 30/30 12.7 1E-15
    $F2$ 2.37E-16 0 3.55E-15 2.37E-16±2.90724E-31 30/30 58.2 1E-10
    $F3 $ 0 0 0 0±0 30/30 42.7 1E-15
    $F4$ 1.57E-32 1.57E-32 1.60E-32 1.57E-32±1.5E-69 30/30 119 1E-15
    $F5$ 1.35E-32 1.35E-32 1.35E-32 1.35E-32±2.5E-95 30/30 118 1E-15
    $F6$ -78.33233141 -78.33233141 -78.33233141 -78.33233141±1.9E-24 30/30 7.3 1E-7
    $F7 $ 3.23E-22 2.61E-26 4.39E-21 3.23E-22±3.66E-43 30/30 205 1E-15
    $F8 $ 1.21E-78 2.91E-221 3.60E-77 1.21E-78±1.54E-155 30/30 42.8 1E-15
    $F9$ 1.64E-52 1.94E-53 4.59E-52 1.64E-52±5.11E-105 30/30 18.2 1E-15
    $F10$ 2.74E-22 3.35E-32 1.11E-21 2.74E-22±5.12E-44 30/30 219 1E-15
    $F11$ 2.75E-07 0 7.87E-06 2.75E-07±7.39168E-13 30/30 1 816 1E-5
    $F12$ 3.82E-04 3.82E-04 3.82E-04 3.82E-04±2.71969E-38 30/30 4.1 1E-8
    $F13$ 6.36E-04 3.03E-05 2.54E-03 6.36E-04±1.7E-07 30/30 30.9 1E-2
    $F14$ 1.57E-32 1.57E-32 1.6E-32 1.57E-32±1.55E-69 30/30 126 1E-15
    $F15$ 1.35E-32 1.35E-32 1.35E-32 1.35E-32±2.5E-95 30/30 119 1E-15
    下载: 导出CSV

    表  4  与现有算法的结果比较

    Table  4  Comparison with other algorithms

    Functions FPSO-TF FEP OGA/Q CMA-ES JADE OLPSO-L OLPSO-G
    $F1$ Mean 0 4.6E-2 0 1.76E+2 0 0 1.07
    SD 0 1.2E-2 0 13.89 0 0 0.99
    Rank 1 2 1 4 1 1 3
    t-test - -19.17 0 -63.36 0 0 -8.5
    $F2$ Mean 2.37E-16 1.8E-2 4.4E-16 12.124 4.4E-15 4.14E-15 7.98E-015
    SD 2.90724E-31 2.1E-3 3.99E-17 9.28 0 0 2.03E-15
    Rank 1 6 2 7 4 3 5
    t-test - -42.8 -5 -6.5 -7.2E+16 -6.5+16 -19
    $F3$ Mean 0 1.6E-2 0 9.59E-16 2.E-4 0 4.8E-3
    SD 0 2.2E-2 0 3.5E-16 1.4E-3 0 8.63E-3
    Rank 1 5 1 2 3 1 4
    t-test - -3.64 0 -13.7 -0.7 0 -2.7
    $F7$ Mean 3.23E-22 5.06 0.75 2.33E-15 0.32 1.26 21.52
    SD 3.66E-43 5.87 0.11 7.7E-16 1.1 1.4 29.92
    Rank 1 6 4 2 3 5 7
    t-test - -4.26 -34.1 -15.1 -1.45 -4.5 -1.2
    $F8$ Mean 1.21E-78 5.7E-4 0 4.56E-16 1.3E-54 1.11E-38 4.1E-54
    SD 1.54E-155 1.3E-4 0 1.13E-16 9.2E-54 1.3E-38 6.32E-54
    Rank 2 7 1 5 3 6 4
    t-test - -21.9 0 -20.4 -0.7 --4.3 -3.2
    $F12$ Mean 3.82E-4 14.98 3.03E-2 3.15E+3 7.1 3.82E-4 3.84E+2
    SD 2.71969E-38 52.6 6.45E-4 5.79E+2 28 0 2.17E+2
    Rank 1 4 2 6 3 1 5
    t-test - -1.4 -234.8 -27.2 -1.3 0 -8.8
    $F13$ Mean 6.36E-4 7.6E-3 6.3E-3 5.92E-2 6.8E-4 1.64E-2 1.16E-2
    SD 1.7E-7 2.6E-3 4.07E-4 1.73E-2 2.5E-4 3.25E-3 4.1E-3
    Rank 1 4 3 7 2 6 5
    t-test - -13.5 -71.3 -16.9 -0.88 -26.3 -12.8
    $F14$ Mean 1.57E-32 9.2E-6 6.02E-6 1.63E-15 1.6E-32 1.57E-32 1.57E-32
    SD 1.55E-69 3.6E-6 1.16E-6 4.93E-16 5.5E-48 2.79E-48 1.01E-33
    Rank 1 5 4 3 2 1 1
    t-test - -12.8 -1.65 -16 -2.7E+18 0 0
    $F15$ Mean 1.35E-32 1.6E-4 1.87E-4 1.71E-15 1.4E-32 1.35E-32 4.39E-4
    SD 2.5E-95 7.3E-5 2.62E-5 3.7E-16 1.1E-47 5.6E-48 2.2E-3
    Rank 1 4 5 3 2 1 6
    t-test - -10 -35.6 -23 -0.23E+15 0 -0.99
    Ave.rank 1.1 4.7 2.5 4 2.6 4.9 5.6
    Final rank 1 5 2 4 3 6 7
    下载: 导出CSV
  • [1] Kennedy J, Eberhart R. Particle swarm optimization. In:Proceedings of the 1995 IEEE International Conference on Neural Network. Perth, Australia:IEEE, 1995. 1942-1948
    [2] 吕强, 刘士荣, 邱雪娜.基于信息素机制的粒子群优化算法的设计与实现.自动化学报, 2009, 35(11):1410-1419 http://www.aas.net.cn/CN/Y2009/V35/I11/1410

    Lv Qiang, Liu Shi-Rong, Qiu Xue-Na. Design and realization of particle swarm optimization based on pheromone mechanism. Acta Automatica Sinica, 2009, 35(11):1410-1419 http://www.aas.net.cn/CN/Y2009/V35/I11/1410
    [3] Wang Y P, Dang C Y. An evolutionary algorithm for global optimization based on level-set evolution and Latin squares. IEEE Transactions on Evolutionary Computation, 2007, 11(5):579-595 doi: 10.1109/TEVC.2006.886802
    [4] Lu B Q, Gao G Q, Lu Z Y. The block diagram method for designing the particle swarm optimization algorithm. Journal of Global Optimization, 2012, 52(4):689-710 doi: 10.1007/s10898-011-9699-9
    [5] Zhan Z H, Zhang J, Li Y, Shi Y H. Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2011, 15(6):832-847 doi: 10.1109/TEVC.2010.2052054
    [6] Ustundag B, Eksin I, Bir A. A new approach to global optimization using a closed loop control system with fuzzy logic controller. Advances in Engineering Software, 2002, 33(6):309-318 doi: 10.1016/S0965-9978(02)00036-4
    [7] Lee J, Chiang H D. A dynamical trajectory-based methodology for systematically computing multiple optimal solutions of general nonlinear programming problems. IEEE Transactions on Automatic Control, 2004, 49(6):888-889 doi: 10.1109/TAC.2004.829603
    [8] Motee N, Jadbabaie A. Distributed multi-parametric quadratic programming. IEEE Transactions on Automatic Control, 2009, 54(10):2279-2289 doi: 10.1109/TAC.2009.2014916
    [9] Nedic A. Asynchronous broadcast-based convex optimization over a network. IEEE Transactions on Automatic Control, 2011, 56(6):1337-1351 doi: 10.1109/TAC.2010.2079650
    [10] Necoara I. Random coordinate descent algorithms for multi-agent convex optimization over networks. IEEE Transactions on Automatic Control, 2013, 58(8):2001-2012 doi: 10.1109/TAC.2013.2250071
    [11] 李宝磊, 施心陵, 苟常兴, 吕丹桔, 安镇宙, 张榆锋.多元优化算法及其收敛性分析.自动化学报, 2015, 41(5):949-959 http://www.aas.net.cn/CN/Y2015/V41/I5/949

    Li Bao-Lei, Shi Xin-Ling, Gou Chang-Xing, Lv Dan-Ju, An Zhen-Zhou, Zhang Yu-Feng. Multivariant optimization algorithm and its convergence analysis. Acta Automatica Sinica, 2015, 41(5):949-959 http://www.aas.net.cn/CN/Y2015/V41/I5/949
    [12] 陆志君, 安俊秀, 王鹏.基于划分的多尺度量子谐振子算法多峰优化.自动化学报, 2016, 42(2):235-245 http://www.aas.net.cn/CN/Y2016/V42/I2/235

    Lu Zhi-Jun, An Jun-Xiu, Wang Peng. Partition-based MQHOA for multimodal optimization. Acta Automatica Sinica, 2016, 42(2):235-245 http://www.aas.net.cn/CN/Y2016/V42/I2/235
    [13] 陈振兴, 严宣辉, 吴坤安, 白猛.融合张角拥挤控制策略的高维多目标优化.自动化学报, 2015, 41(6):1145-1158 http://www.aas.net.cn/CN/abstract/abstract18689.shtml

    Chen Zhen-Xing, Yan Xuan-Hui, Wu Kun-An, Bai Meng. Many-objective optimization integrating open angle based congestion control strategy. Acta Automatica Sinica, 2015, 41(6):1145-1158 http://www.aas.net.cn/CN/abstract/abstract18689.shtml
    [14] Ma S Z, Yang Y J, Liu H Q. A parameter free filled function for unconstrained global optimization. Applied Mathematics and Computation, 2010, 215(10):3610-3619 doi: 10.1016/j.amc.2009.10.057
    [15] Gao C L, Yang Y J, Han B S. A new class of filled functions with one parameter for global optimization. Computers & Mathematics with Applications, 2011, 62(6):2393-2403 https://www.researchgate.net/publication/220511247_A_new_class_of_filled_functions_with_one_parameter_for_global_optimization
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2407
  • HTML全文浏览量:  342
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-24
  • 录用日期:  2016-12-18
  • 刊出日期:  2018-01-20

目录

    /

    返回文章
    返回