2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种针对单快拍DOA估计的子空间搜索近似消息传递算法

曾令豪 刘静 韩崇昭

曾令豪, 刘静, 韩崇昭. 一种针对单快拍DOA估计的子空间搜索近似消息传递算法. 自动化学报, 2018, 44(3): 443-452. doi: 10.16383/j.aas.2018.c160544
引用本文: 曾令豪, 刘静, 韩崇昭. 一种针对单快拍DOA估计的子空间搜索近似消息传递算法. 自动化学报, 2018, 44(3): 443-452. doi: 10.16383/j.aas.2018.c160544
ZENG Ling-Hao, LIU Jing, HAN Chong-Zhao. A Subspace Searching Approximation Message Passing Algorithm for Single Snapshot DOA Estimation. ACTA AUTOMATICA SINICA, 2018, 44(3): 443-452. doi: 10.16383/j.aas.2018.c160544
Citation: ZENG Ling-Hao, LIU Jing, HAN Chong-Zhao. A Subspace Searching Approximation Message Passing Algorithm for Single Snapshot DOA Estimation. ACTA AUTOMATICA SINICA, 2018, 44(3): 443-452. doi: 10.16383/j.aas.2018.c160544

一种针对单快拍DOA估计的子空间搜索近似消息传递算法

doi: 10.16383/j.aas.2018.c160544
基金项目: 

国家自然科学基金 61370037

国家自然科学基金 61573276

国家重点基础研究发展计划(973计划) 2013CB329405

国家自然科学基金 61221063

国家自然科学基金 61573271

详细信息
    作者简介:

    曾令豪 西安交通大学综合自动化研究所博士研究生.主要研究方向为压缩感知与目标跟踪.E-mail:zenglh@stu.xjtu.edu.cn

    韩崇昭 西安交通大学电子与信息工程学院教授.主要研究方向为多源信息融合, 随机控制与自适应控制, 非线性频谱分析.E-mail:czhan@mail.xjtu.edu.cn

    通讯作者:

    刘静 西安交通大学电子与信息工程学院自动化系副教授.主要研究方向为压缩感知与信息融合.本文通信作者.E-mail:elelj20080730@gmail.com

A Subspace Searching Approximation Message Passing Algorithm for Single Snapshot DOA Estimation

Funds: 

National Natural Science Foundation of China 61370037

National Natural Science Foundation of China 61573276

National Basic Research Program of China (973 Program) 2013CB329405

National Natural Science Foundation of China 61221063

National Natural Science Foundation of China 61573271

More Information
    Author Bio:

    Ph. D. candidate at the Institute of Integrated Automation, School of Electronic and Information Engineering, Xi'an Jiaotong University. His research interest covers compressed sensing and target tracking

    Professor at the School of Electronic and Information Engineering, Xi'an Jiaotong University. His research interest covers multi-source information fusion, stochastic control and adaptive control, and nonlinear spectral analysis

    Corresponding author: LIU Jing Associate professor at the School of Electronics and Information Engineering, Xi'an Jiaotong University. Her research interest covers compressed sensing and information fusion. Corresponding author of this paper
  • 摘要: 压缩感知(Compressed sensing,CS)技术应用于单快拍波达方向(Direction of arrival,DOA)估计中可以实现相关信号的超分辨估计,但会遇到感知矩阵高相干性以及对噪声敏感的问题.本文提出一种基于近似消息传递的子空间搜索算法以解决上述问题.该算法首先通过近似消息传递算法得到一个粗解,随后利用该粗解划分子空间,最后在子空间中寻找精确解.仿真结果验证了所提算法的有效性.文章最后通过理论分析了该算法性能并讨论了算法在信号数未知时的扩展应用.
    1)  本文责任编委 辛景民
  • 图  1  AMP算法重构结果

    Fig.  1  Reconstruction result of AMP algorithm

    图  2  DOA感知矩阵的列相干系数矩阵

    Fig.  2  Coherent coefficient matrix of DOA sensing matrix

    图  3  随机感知矩阵的列相干系数矩

    Fig.  3  Coherent coefficient matrix of random sensing matrix

    图  4  DOA感知矩阵某一列的相干系数

    Fig.  4  The coherence coefficient of one column in sensing matrix

    图  5  阈值选择与迭代次数关系

    Fig.  5  The iteration number versus threshold value

    图  6  角度估计的RMSE与信噪比关系

    Fig.  6  RMSE in angle estimation versus SNR

    图  7  运行时间与信噪比关系

    Fig.  7  Execute time versus SNR

    图  8  最小分辨角度与信噪比的关系

    Fig.  8  Minimum resolution angle versus SN

    图  9  不同噪声水平下的等效阈值

    Fig.  9  Equivalent threshold under different noise levels

    表  1  SSAMP算法伪代码

    Table  1  SSAMP algorithm pseudocode

    输入: $A$, ${\pmb y}$, ${\tau_0}$, $K$
    输出: ${\widehat {\pmb x}}$
    初始化: ${\pmb x}^0, {\pmb z}^0, {\tau}^0, res1, res1_{\rm old}$
    求粗解: while($res1 < res1_{\rm old}$)
      $res1_{\rm old}=res1$
      由AMP算法公式更新${\pmb x}^t, {\pmb z}^t, {\tau }^t, res1$
    end  ${\pmb x}_{\rm rough}={\pmb x}^t$
    划分子空间: for $\forall {\pmb x}_{{\rm rough}, i} \ne 0$
      if ${\pmb x}_{{\rm rough}, i-1} =0: r=r+1, Supp_r \leftarrow i $
      elseif ${\pmb x}_{{\rm rough}, i-1} \ne 0: r=r, Supp_r \leftarrow i$
      end
    end  $S_r=Supp_r$的中位数
    求精确解: 尝试解支撑集$S=\bigcup\limits_{r = 1}^{{N_R}} {{S_r}}$, $N_{sol}=K-N_r+1$
    for $r=1:N_r$
      for $p=1:N_{sol}$
        $T=$所有$Supp_r$中$p$元备选支撑集组合
        遍历$T$, 找出$p$元最优解$S_r^{(p)}$及相应残差$res2_r^{(p)}$
        if $res2_r^{(p)}>res2_r^{(p-1)}$且$p \ge 2$
          break
        end
      end
      更新$S$, $N_{sol}=K-{\rm size}(S)+1$
    end
    求最终解: ${\widehat {\pmb x}}=A_S^*{\pmb y}$
    下载: 导出CSV
  • [1] Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, 34(3):276-280 doi: 10.1109/TAP.1986.1143830
    [2] Roy R, Paulraj A, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5):1340-1342 doi: 10.1109/TASSP.1986.1164935
    [3] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306 doi: 10.1109/TIT.2006.871582
    [4] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022 doi: 10.1109/TSP.2005.850882
    [5] Kim J M, Lee O K, and Ye J C. Compressive MUSIC:revisiting the link between compressive sensing and array signal processing. IEEE Transactions on Information Theory, 2012, 58(1):278-301 doi: 10.1109/TIT.2011.2171529
    [6] 王秀红, 毛兴鹏, 张乃通.基于CS的脉冲压缩雷达单快拍DOA估计.系统工程与电子技术, 2014, 36(9):1737-1743 doi: 10.3969/j.issn.1001-506X.2014.09.11

    Wang Xiu-Hong, Mao Xing-Peng, Zhang Nai-Tong. Single-snap DOA estimation based on compressed sensing in pulse compression radar system. Systems Engineering and Electronics, 2014, 36(9):1737-1743 doi: 10.3969/j.issn.1001-506X.2014.09.11
    [7] Liu J, Mallick M, Han C Z, Yao X H, Lian F. Similar sensing matrix pursuit:an efficient reconstruction algorithm to cope with deterministic sensing matrix. Signal Processing, 2014, 95:101-110 doi: 10.1016/j.sigpro.2013.08.009
    [8] Liu J, Mallick M, Lian F, Han C Z, Sheng M X, Yao X H. General similar sensing matrix pursuit:An efficient and rigorous reconstruction algorithm to cope with deterministic sensing matrix with high coherence. Signal Processing, 2015, 114:150-163 doi: 10.1016/j.sigpro.2015.03.002
    [9] Donoho D L, Maleki A, Montanari A. Message passing algorithms for compressed sensing: Ⅰ. Motivation and construction. In: Proceedings of the 2010 Information Theory Workshop on Information Theory. Cairo, Egypt: IEEE, 2010. 1-5
    [10] Donoho D L, Maleki A, Montanari A. Message passing algorithms for compressed sensing: Ⅱ. Analysis and Validation. In: Proceedings of the 2010 IEEE Information Theory Workshop on Information Theory. Cairo, Egypt: IEEE, 2010. 6-10 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5503228
    [11] Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of the 2011 IEEE International Symposium on Information Theory Proceedings (ISIT). St Petersburg, Russia: IEEE, 2011. 2168-2172 http://arxiv.org/abs/1010.5141
    [12] Vila J P, Schniter P. Expectation-maximization Gaussian-mixture approximate message passing. IEEE Transactions on Signal Processing, 2013, 61(19):4658-4672 doi: 10.1109/TSP.2013.2272287
    [13] Tan J, Ma Y T, Baron D. Compressive imaging via approximate message passing with image denoising. IEEE Transactions on Signal Processing, 2015, 63(8):2085-2092 doi: 10.1109/TSP.2015.2408558
    [14] 任越美, 张艳宁, 李映.压缩感知及其图像处理应用研究进展与展望.自动化学报, 2014, 40(8):1563-1575 http://www.aas.net.cn/CN/abstract/abstract18426.shtml

    Ren Yue-Mei, Zhang Yan-Ning, Li Ying. Advances and perspective on compressed sensing and application on image processing. Acta Automatica Sinica, 2014, 40(8):1563-1575 http://www.aas.net.cn/CN/abstract/abstract18426.shtml
    [15] Ziniel J, Schniter P. Dynamic compressive sensing of time-varying signals via approximate message passing. IEEE Transactions on Signal Processing, 2013, 61(21):5270-5284 doi: 10.1109/TSP.2013.2273196
    [16] Orlando D, Venturino L, Lops M, Ricci G. Track-before-detect strategies for STAP radar. IEEE Transactions on Signal Processing, 2010, 58(2):933-938 doi: 10.1109/TSP.2009.2032991
    [17] Richards M A. Fundamentals of Radar Signal Processing. New York:McGraw-Hill, 2005. 88-92
    [18] Maleki A, Montanari A. Analysis of approximate message passing algorithm. In: Proceedings of Information Sciences and Systems. Princeton, USA: IEEE, 2010. 1-7 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5464887
    [19] Elad M. Sparse and Redundant Representations. New York:Springer, 2010. 65-68
    [20] Wei D, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249 doi: 10.1109/TIT.2009.2016006
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2228
  • HTML全文浏览量:  373
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 录用日期:  2017-05-06
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回