-
摘要: 针对具有执行器故障和未知扰动的线性广义系统,提出一种新的故障估计器设计方法.所设计的故障估计器具有非奇异结构,便于实现.在故障频域范围有限的条件下,为了抑制未知扰动和有限频域故障对故障估计误差的影响,基于广义Kalman-Yakubovich-Popov(KYP)引理给出了故障估计器的鲁棒性设计条件,并将其转化为方便求解的线性矩阵不等式形式.最后,通过一个电路系统的仿真算例验证了所提出方法的有效性.
-
关键词:
- 广义系统 /
- 故障估计器 /
- 广义Kalman-Yakubovich-Popov (KYP)引理 /
- 有限频域
Abstract: This paper proposes a novel fault estimator design method for linear descriptor systems with actuator fault and unknown disturbance. The proposed fault estimator has a nonsingular structure and hence is easy to implement. Under the condition that faults belong to a finite frequency domain, the generalized Kalman-Yakubovich-Popov (KYP) lemma is used to propose robust design conditions to attenuate the effect of unknown disturbance and faults on the fault estimation error. Moreover, the design conditions are converted to linear matrix inequalities, which can be solved easily. Finally, an electrical circuit is simulated to verify the effectiveness of the proposed method.1) 本文责任编委 姜斌 -
表 1 不同频率范围的$\Omega$和$\Xi$
Table 1 $\Omega$ and $\Xi$ corresponding to different frequency ranges
低频范围 中频范围 高频范围 $\Omega$ $\vert \omega \vert \leq \varpi _l$ $\varpi_1\leq \omega \leq \varpi_2 $ $\vert \omega \vert \geq \varpi _h$ $\Xi$ $\left[ \begin{matrix} -\mathcal{Q} & \mathcal{P} \\ \mathcal{P} & \varpi^2_l \mathcal{Q} \end{matrix} \right] $ $\left[ \begin{matrix} -\mathcal{Q} & \mathcal{P}+j\varpi _c \mathcal{Q} \\ \mathcal{P} -j\varpi _c \mathcal{Q} & -\varpi_1\varpi_2 \mathcal{Q} \end{matrix} \right] $ $\left[ \begin{matrix} \mathcal{Q} & \mathcal{P} \\ \mathcal{P} & -\varpi^2_h \mathcal{Q} \end{matrix} \right] $ -
[1] Wang H, Daley S. Actuator fault diagnosis:an adaptive observer-based technique. IEEE Transactions on Automatic Control, 1996, 41(7):1073-1078 doi: 10.1109/9.508919 [2] Zhang K, Jiang B, Cocquempot V. Adaptive observer-based fast fault estimation. International Journal of Control, Automation, and Systems, 2008, 6(3):320-326 https://www.wenkuxiazai.com/doc/5c6426c6d5bbfd0a795673ad.html [3] Alwi H, Edwards C, Tan C P. Sliding mode estimation schemes for incipient sensor faults. Automatica, 2009, 45(7):1679-1685 doi: 10.1016/j.automatica.2009.02.031 [4] 张柯, 姜斌.基于故障诊断观测器的输出反馈容错控制设计.自动化学报, 2010, 36(2):274-281 http://www.aas.net.cn/CN/abstract/abstract18077.shtmlZhang Ke, Jiang Bin. Fault diagnosis observer-based output feedback fault tolerant control design. Acta Automatica Sinica, 2010, 36(2):274-281 http://www.aas.net.cn/CN/abstract/abstract18077.shtml [5] Gao Z W, Ding S X. Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica, 2007, 43(5):912-920 doi: 10.1016/j.automatica.2006.11.018 [6] 陈莉, 钟麦英.不确定奇异时滞系统的鲁棒H∞故障诊断滤波器设计.自动化学报, 2008, 34(8):943-949 http://www.aas.net.cn/CN/abstract/abstract13517.shtmlChen Li, Zhong Mai-Ying. Designing robust H∞ fault detection filter for singular time-delay systems with uncertainty. Acta Automatica Sinica, 2008, 34(8):943-949 http://www.aas.net.cn/CN/abstract/abstract13517.shtml [7] Hamdi H, Rodrigues M, Mechmeche C, Theilliol D, Braiek N B. Fault detection and isolation in linear parameter-varying descriptor systems via proportional integral observer. International Journal of Adaptive Control and Signal Processing, 2012, 26(3):224-240 doi: 10.1002/acs.v26.3 [8] Wang Z H, Shen Y, Zhang X L. Actuator fault estimation for a class of nonlinear descriptor systems. International Journal of Systems Science, 2014, 45(3):487-496 doi: 10.1080/00207721.2012.724100 [9] Yao L N, Cocquempot V, Wang H. Fault diagnosis and fault tolerant control scheme for a class of non-linear singular systems. IET Control Theory & Applications, 2015, 9(6):843-851 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=7089377 [10] Wang J L, Yang G H, Liu J. An LMI approach to H--index and mixed H-/H∞ fault detection observer design. Automatica, 2007, 43(9):1656-1665 doi: 10.1016/j.automatica.2007.02.019 [11] Yang H J, Xia Y Q, Zhang J H. Generalised finite-frequency KYP lemma in delta domain and applications to fault detection. International Journal of Control, 2011, 84(3):511-525 doi: 10.1080/00207179.2011.561501 [12] Chen J L, Cao Y Y. A stable fault detection observer design in finite frequency domain. International Journal of Control, 2013, 86(2):290-298 doi: 10.1080/00207179.2012.723829 [13] Chen J, Cao Y Y, Zhang W D. A fault detection observer design for LPV systems in finite frequency domain. International Journal of Control, 2015, 88(3):571-584 doi: 10.1080/00207179.2014.966326 [14] 李贤伟, 高会军.有限频域分析与设计的广义KYP引理方法综述.自动化学报, 2016, 42(11):1605-1619 http://www.aas.net.cn/CN/abstract/abstract18950.shtmlLi Xian-Wei, Gao Hui-Jun. An overview of generalized KYP lemma based methods for finite frequency analysis and design. Acta Automatica Sinica, 2016, 42(11):1605-1619 http://www.aas.net.cn/CN/abstract/abstract18950.shtml [15] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults. IEEE Transactions on Cybernetics, 2014, 44(8):1446-1458 http://ieeexplore.ieee.org/document/6650097/ [16] Long Y, Yang G H. Fault detection and isolation for networked control systems with finite frequency specifications. International Journal of Robust and Nonlinear Control, 2014, 24(3):495-514 doi: 10.1002/rnc.v24.3 [17] Ding D W, Wang H, Li X L. H--/H∞ fault detection observer design for two-dimensional Roesser systems. Systems and Control Letters, 2015, 82:115-120 doi: 10.1016/j.sysconle.2015.04.005 [18] 董全超, 钟麦英.线性时滞系统主动容错H∞控制.系统工程与电子技术, 2009, 31(11):2693-2697 http://subject.wanfangdata.com.cn/xstjbg/2010/rgzn4.htmlDong Quan-Chao, Zhong Mai-Ying. Active fault tolerant H∞ control for linear time-delay systems. Systems Engineering and Electronics, 2009, 31(11):2693-2697 http://subject.wanfangdata.com.cn/xstjbg/2010/rgzn4.html [19] Dong Q C, Zhong M Y, Ding S X. Active fault tolerant control for a class of linear time-delay systems in finite frequency domain. International Journal of Systems Science, 2012, 43(3):543-551 doi: 10.1080/00207721.2010.517862 [20] Gu Y, Ming H F, Dan Y. Fault reconstruction for linear descriptor systems using PD observer in finite frequency domain. In:Proceedings of the 24th Chinese Control and Decision Conference. Taiyuan, China:IEEE, 2012. 2281-2286 [21] Wang Z H, Rodrigues M, Theilliol D, Shen Y. Sensor fault estimation filter design for discrete-time linear time-varying systems. Acta Automatica Sinica, 2014, 40(10):2364-2369 doi: 10.1016/S1874-1029(14)60365-7 [22] Iwasaki T, Hara S. Generalized KYP lemma:unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 2005, 50(1):41-59 doi: 10.1109/TAC.2004.840475 [23] Wang H, Yang G H. A finite frequency domain approach to fault detection observer design for linear continuous-time systems. Asian Journal of Control, 2008, 10(5):559-568 doi: 10.1002/asjc.v10:5 [24] Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4):421-448 doi: 10.1002/(ISSN)1099-1239 [25] Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Studies in Applied Mathematics. Philadelphia, PA, USA:Society for Industrial and Applied Mathematics, 1994. 7-29