2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空域强鲁棒零水印方案

熊祥光

董滔, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
引用本文: 熊祥光. 空域强鲁棒零水印方案. 自动化学报, 2018, 44(1): 160-175. doi: 10.16383/j.aas.2018.c160478
DONG Tao, LI Xiao-Li, ZHAO Da-Duan. Event-triggered Consensus of Third-order Discrete-time Multi-agent Systems. ACTA AUTOMATICA SINICA, 2019, 45(7): 1366-1372. doi: 10.16383/j.aas.2017.c170406
Citation: XIONG Xiang-Guang. A Zero Watermarking Scheme with Strong Robustness in Spatial Domain. ACTA AUTOMATICA SINICA, 2018, 44(1): 160-175. doi: 10.16383/j.aas.2018.c160478

空域强鲁棒零水印方案

doi: 10.16383/j.aas.2018.c160478
基金项目: 

国家自然科学基金 61309006

贵州省教育厅创新群体重大研究项目 Qian-Jiao-He KY Zi [2016] 027

中央引导地方科技发展专项资金 Qian-Ke-Zhong-Yin-Di [2016]4006

贵州省教育厅自然科学基金 Qian-Jiao-He KY Zi [2015]434

详细信息
    作者简介:

    熊祥光 贵州师范大学大数据与计算机科学学院副教授.主要研究方向为多媒体信息安全和数字水印技术.E-mail:xxg0851@163.com

A Zero Watermarking Scheme with Strong Robustness in Spatial Domain

Funds: 

National Natural Science Foundation of China 61309006

Major Research Program of Creative Groups of Educational Commission of Guizhou Province Qian-Jiao-He KY Zi [2016] 027

Central Leading Local Science and Technology Development Special Foundation Qian-Ke-Zhong-Yin-Di [2016]4006

Natural Science Foundation of Educational Commission of Guizhou Province Qian-Jiao-He KY Zi [2015]434

More Information
    Author Bio:

    Associate professor at the School of Big Data and Computer Science, Guizhou Normal University. His research interest covers multimedia information security and digital watermarking technology

  • 摘要: 为了解决传统鲁棒水印技术不可感知性和鲁棒性间的矛盾,对空域零水印技术进行研究,分析了常规图像处理攻击对载体图像所有选择分块整体均值与分块均值间大小关系的影响,结果表明此关系具有较强的稳健性.基于此,提出了一种新的空域强鲁棒零水印方案.1)利用混沌系统对初值敏感的特性映射图像分块的位置和采用混沌加密与Arnold空间置乱技术对原始水印信号进行预处理;2)采用载体图像所有选择分块整体均值与分块均值间大小关系的稳健性能来构造特征信息;3)采用混沌加密和Arnold空间置乱技术对生成的零水印信号进行后处理.仿真实验结果表明,本文算法对常规的图像处理、尺寸缩放、旋转和多种组合攻击等都表现出较强的抗攻击能力.与相似的鲁棒零水印方案相比,本文算法的平均运行时间不仅减少了约90%,而且抗攻击平均性能提高了约15%,表明它具有较低的计算复杂度和更优越的鲁棒性能,适用于对载体图像质量要求较高的作品版权保护应用场合.
  • 近些年来, 由于多智能体协同控制在编队控制[1]、机器人网络[2]、群集行为[3]、移动传感器[4-5]等方面的广泛应用, 多智能体系统的协同控制问题受到了众多研究者的广泛关注.一致性问题是多智能体系统协同控制领域的一个关键问题, 其目的是通过与邻居之间的信息交换, 使所有智能体的状态达成一致.迄今为止, 对多智能体一致性的研究也已取得了丰硕的成果, 根据多智能体的动力学模型分类, 主要可以将其分为以下4种情形:一阶[6-9]、二阶[10-13]、三阶[14-15]、高阶[16-18].

    在实际应用中, 由于CPU处理速度和内存容量的限制, 智能体不能频繁地进行控制以及与其邻居交换信息.因此, 事件触发控制策略作为减少控制次数和通信负载的有效途径, 受到了越来越多的关注.到目前为止, 对事件触发控制机制的研究也取得了很多成果[19-23].Xiao等[19]基于事件触发控制策略, 解决了带有领航者的离散多智能体系统的跟踪问题.通过利用状态测量误差并且基于二阶离散多智能体系统动力学模型, Zhu等[20]提出了一种自触发的控制策略, 该策略使得所有智能体的状态均达到一致. Huang等[21]研究了基于事件触发策略的Lur$'$e网络的跟踪问题.针对不同的领航者-跟随者系统, Xu等[22]提出了3种不同类型的事件触发控制器, 包含分簇式控制器、集中式控制器和分布式控制器, 以此来解决对应的一致性问题.然而, 大多数现有的事件触发一致性成果集中于考虑一阶多智能体系统和二阶多智能体系统, 很少有成果研究三阶多智能体系统的事件触发控制问题, 特别是对于三阶离散多智能体系统, 成果更是少之又少.所以, 设计相应的事件触发控制协议来解决三阶离散多智能体系统的一致性问题已变得尤为重要.

    本文研究了基于事件触发控制机制的三阶离散多智能体系统的一致性问题, 文章主要有以下三点贡献:

    1) 利用位置、速度和加速度三者的测量误差, 设计了一种新颖的事件触发控制机制.

    2) 利用不等式技巧, 分析得到了保证智能体渐近收敛到一致状态的充分条件.与现有的事件触发文献[19-22]不同的是, 所得的一致性条件与通信拓扑的Laplacian矩阵特征值和系统的耦合强度有关.

    3) 给出了排除类Zeno行为的参数条件, 进而使得事件触发控制器不会每个迭代时刻都更新.

    智能体间的通信拓扑结构用一个有向加权图来表示, 记为.其中, $\vartheta = \left\{ {1, 2, \cdots, n} \right\}$表示顶点集, $\varsigma\subseteq\vartheta\times\vartheta$表示边集, 称作邻接矩阵, ${a_{ij}}$表示边$\left({j, i} \right) \in \varsigma $的权值.当$\left({j, i} \right) \in \varsigma $时, 有${a_{ij}} > 0$; 否则, 有${a_{ij}} = 0$. ${a_{ij}} > 0$表示智能体$i$能收到来自智能体$j$的信息, 反之则不成立.对任意一条边$j$, 节点$j$称为父节点, 节点$i$则称为子节点, 节点$i$是节点$j$的邻居节点.假设通信拓扑中不存在自环, 即对任意$i\in \vartheta $, 有${a_{ii}} = 0$.

    定义$L = \left({{l_{ij}}}\right)\in{\bf R}^{n\times n}$为图${\cal G}$的Laplacian矩阵, 其中元素满足${l_{ij}} = - {a_{ij}} \le 0, i \ne j$; ${l_{ii}} = \sum\nolimits_{j = 1, j \ne i}^n {{a_{ij}} \ge 0} $.智能体$i$的入度定义为${d_i} = \sum\nolimits_{j = 1}^n {{a_{ij}}} $, 因此可得到$L = D - \Delta $, 其中, .如果有向图中存在一个始于节点$i$, 止于节点$j$的形如的边序列, 那么称存在一条从$i$到$j$的有向路径.特别地, 如果图中存在一个根节点, 并且该节点到其他所有节点都有有向路径, 那么称此有向图存在一个有向生成树.另外, 如果有向图${\cal G}$存在一个有向生成树, 则Laplacian矩阵$L$有一个0特征值并且其他特征值均含有正实部.

    考虑多智能体系统由$n$个智能体组成, 其通信拓扑结构由有向加权图${\cal G}$表示, 其中每个智能体可看作图${\cal G}$中的一个节点, 每个智能体满足如下动力学方程:

    $ \begin{equation} \left\{ \begin{array}{l} {x_i}\left( {k + 1} \right) = {x_i}\left( k \right) + {v_i}\left( k \right)\\ {v_i}\left( {k + 1} \right) = {v_i}\left( k \right) + {z_i}\left( k \right)\\ {z_i}\left( {k + 1} \right) = {z_i}\left( k \right) + {u_i}\left( k \right) \end{array} \right. \end{equation} $

    (1)

    其中, ${x_i}\left(k \right) \in \bf R$表示位置状态, ${v_i}\left(k \right) \in \bf R$表示速度状态, ${z_i}\left(k \right) \in \bf R$表示加速度状态, ${u_i}\left(k \right) \in \bf R$表示控制输入.

    基于事件触发控制机制的控制器协议设计如下:

    $ \begin{equation} {u_i}\left( k \right) = \lambda {b_i}\left( {k_p^i} \right) + \eta {c_i}\left( {k_p^i} \right) + \gamma {g_i}\left( {k_p^i} \right), k \in \left[ {k_p^i, k_{p + 1}^i} \right) \end{equation} $

    (2)

    其中, $\lambda> 0$, $\eta> 0$, $\gamma> 0$表示耦合强度,

    $ \begin{align*}&{b_i}\left( k \right)= \sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{x_j}\left( k \right) - {x_i}\left( k \right)} \right)} , \nonumber\\ &{c_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{v_j}\left( k \right) - {v_i}\left( k \right)} \right)}, \nonumber\\ & {g_i}\left( k \right)=\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{z_j}\left( k \right) - {z_i}\left( k \right)} \right)} .\end{align*} $

    触发时刻序列定义为:

    $ \begin{equation} k_{p + 1}^i = \inf \left\{ {k:k > k_p^i, {E_i}\left( k \right) > 0} \right\} \end{equation} $

    (3)

    ${E_i}\left(k \right)$为触发函数, 具有以下形式:

    $ \begin{align} {E_i}\left( k \right)= & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|- {\delta _2}{\beta ^k} - \nonumber\nonumber\\ &{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| - {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| \end{align} $

    (4)

    其中, ${\delta _1} > 0$, ${\delta _2} > 0$, $\beta > 0$, , ${e_{ci}}\left(k \right) = {c_i}\left({k_p^i} \right) - {c_i}\left(k \right)$, ${e_{gi}}\left(k \right) = {g_i}\left({k_p^i} \right) - {g_i}\left(k \right)$.

    令$\varepsilon _i\left(k\right)={x_i}\left(k\right)-{x_1}\left(k\right)$, ${\varphi _i}\left(k\right)={v_i}\left(k \right)-$ ${v_1}\left(k\right)$, ${\phi _i}(k) = {z_i}(k) - {z_1}\left(k \right)$, $i = 2, \cdots, n$. , $\cdots, {\varphi _n}\left(k \right)]^{\rm T}$, $\phi \left(k \right) = {\left[{{\phi _2}\left(k \right), \cdots, {\phi _n}\left(k \right)} \right]^{\rm T}}$. $\psi \left(k \right) = {\left[{{\varepsilon ^{\rm T}}\left(k \right), {\varphi ^{\rm T}}\left(k \right), {\phi ^{\rm T}}\left(k \right)} \right]^{\rm T}}$, , ${\bar e_b} = {\left[{{e_{b1}}\left(k \right), \cdots, {e_{b1}}\left(k \right)} \right]^{\rm T}}$, , ${e_{c1}}\left(k \right)]^{\rm T}$, , ${\bar e_g} = $ ${\left[{{e_{g1}}\left(k \right), \cdots, {e_{g1}}\left(k \right)} \right]^{\rm T}}$, $\tilde e\left(k \right) = [\tilde e_b^{\rm T}\left(k \right), \tilde e_c^{\rm T}\left(k \right), $ $\tilde e_g^{\rm T}\left(k \right)]^{\rm T}$, $\bar e\left(k \right) = [\bar e_b^{\rm T}\left(k \right), \bar e_c^T\left(k \right), \bar e_g^{\rm T}\left(k \right)]^{\rm T}$,

    $ \hat L = \left[ {\begin{array}{*{20}{c}} {{d_2} + {a_{12}}}&{{a_{13}} - {a_{23}}}& \cdots &{{a_{1n}} - {a_{2n}}}\\ {{a_{12}} - {a_{32}}}&{{d_3} + {a_{13}}}& \cdots &{{a_{1n}} - {a_{3n}}}\\ \vdots & \vdots & \ddots & \vdots \\ {{a_{12}} - {a_{n2}}}&{{a_{13}} - {a_{n3}}}& \cdots &{{d_n} + {a_{1n}}} \end{array}} \right] $

    再结合式(1)和式(2)可得到:

    $ \begin{equation} \psi \left( {k + 1} \right) = {Q_1}\psi \left( k \right) + {Q_2}\left( {\tilde e\left( k \right) - \bar e\left( k \right)} \right) \end{equation} $

    (5)

    其中, , .

    定义1.对于三阶离散时间多智能体系统(1), 当且仅当所有智能体的位置变量、速度变量、加速度变量满足以下条件时, 称系统(1)能够达到一致.

    $ \begin{align*} &{\lim _{k \to \infty }}\left\| {{x_j}\left( k \right) - {x_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{v_j}\left( k \right) - {v_i}\left( k \right)} \right\| = 0 \nonumber\\ & {\lim _{k \to \infty }}\left\| {{z_j}\left( k \right) - {z_i}\left( k \right)} \right\| = 0 \\&\quad\qquad \forall i, j = 1, 2, \cdots , n \end{align*} $

    定义2.如果$k_{p + 1}^i - k_p^i > 1$, 则称触发时刻序列$\left\{ {k_p^i} \right\}$不存在类Zeno行为.

    假设1.假设有向图中存在一个有向生成树.

    假设$\kappa$是矩阵${Q_1}$的特征值, ${\mu _i}$是$L$的特征值, 则有如下等式成立:

    $ {\rm{det}}\left( {\kappa {I_{3n - 3}} - {Q_1}} \right)=\nonumber\\ \det \left(\! \!{\begin{array}{*{20}{c}} {\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\!&\!{{0_{n - 1}}}\\ {{0_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}}}\!&\!{ - {I_{n - 1}}}\\ {\lambda {{\hat L}_{n - 1}}}\!&\!{\eta {{\hat L}_{n - 1}}}\!&\!{\left( {\kappa - 1} \right){I_{n - 1}} + \gamma {{\hat L}_{n - 1}}} \end{array}} \!\!\right)=\nonumber\\ \prod\limits_{i = 2}^n {\left[ {{{\left( {\kappa - 1} \right)}^3} + \left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i}} \right]} $

    $ \begin{align} {m_i}\left( \kappa \right)= &{\left( {\kappa - 1} \right)^3} + \nonumber\\&\left( {\lambda + \eta \left( {\kappa - 1} \right) + \gamma {{\left( {\kappa - 1} \right)}^2}} \right){\mu _i} = 0, \nonumber\\& \qquad\qquad\qquad\qquad\qquad i = 2, \cdots , n \end{align} $

    (6)

    则有如下引理:

    引理1[15].   如果矩阵$L$有一个0特征值且其他所有特征值均有正实部, 并且参数$\lambda $, $\eta $, $\gamma $满足下列条件:

    $ \left\{ \begin{array}{l} 3\lambda - 2\eta < 0\\ \left( {\gamma - \eta + \lambda } \right)\left( {\lambda - \eta } \right) < - \dfrac{{\lambda \Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}}\\ \left( {4\gamma + \lambda - 2\eta } \right)<\dfrac{{8\Re \left( {{\mu _i}} \right)}}{{{{\left| {{\mu _i}} \right|}^2}}} \end{array} \right. $

    那么, 方程(6)的所有根都在单位圆内, 这也就意味着矩阵${Q_1}$的谱半径小于1, 即$\rho \left({{Q_1}} \right) < 1$.其中, 表示特征值${\mu _i}$的实部.

    引理2[23].  如果, 那么存在$M \ge 1$和$0 < \alpha < 1$使得下式成立

    $ {\left\| {{Q_1}} \right\|^k} \le M{\alpha ^k}, \quad k \ge 0 $

    定理1.  对于三阶离散多智能体系统(1), 基于假设1, 如果式(2)中的耦合强度满足引理1中的条件, 触发函数(4)中的参数满足$0 < {\delta _1} < 1$, , $0 < \alpha < \beta < 1$, 则称系统(1)能够实现渐近一致.

    证明.令$\omega \left(k \right) = \tilde e\left(k \right) - \bar e\left(k \right)$, 式(5)能够被重新写成如下形式:

    $ \begin{equation} \psi \left( k \right) = Q_1^k\psi \left( 0 \right) + {Q_2}\sum\limits_{s = 0}^{k - 1} {Q_1^{k - 1 - s}\omega \left( s \right)} \end{equation} $

    (7)

    根据引理1和引理2可知, 存在$M \ge 1$和$0 < \alpha < 1$使得下式成立.

    $ \begin{align} \left\| {\psi \left( k \right)} \right\|\le & {\left\| {{Q_1}} \right\|^k}\left\| {\psi \left( 0 \right)} \right\| + \nonumber\\ & \left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{{\left\| {{Q_1}} \right\|}^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|}\le \nonumber\\ & M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+\nonumber\\ & M\left\| {{Q_2}} \right\|\sum\limits_{s = 0}^{k - 1} {{\alpha ^{k - 1 - s}}\left\| {\omega \left( s \right)} \right\|} \end{align} $

    (8)

    由触发条件可得:

    $ \begin{align} & \left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ & \qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^k}\le\nonumber\\ &\qquad {\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\| + {\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\| + \nonumber\\ &\qquad{\delta _1}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\|+ {\delta _1}\left| {{e_{bi}} \left( k \right)} \right| + \nonumber\\ &\qquad{\delta _1}\left| {{e_{ci}} \left( k \right)} \right|+ {\delta _1}\left| {{e_{gi}}\left( k \right)} \right| + {\delta _2}{\beta ^k} \end{align} $

    (9)

    对上式移项可求解得:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le \nonumber\\ &\qquad\frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varepsilon \left( k \right)} \right\|}}{{1 - {\delta _1}}} + \frac{{{\delta _1}\left\| L \right\| \cdot \left\| {\varphi \left( k \right)} \right\|}}{{1 - {\delta _1}}}{\rm{ + }}\nonumber\\ &\qquad\frac{{{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\phi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (10)

    又因为, 和, 可得出下列不等式:

    $ \begin{align} &\left| {{e_{bi}}\left( k \right)} \right| + \left| {{e_{ci}}\left( k \right)} \right| + \left| {{e_{gi}}\left( k \right)} \right|\le\nonumber\\ &\qquad \frac{{{\delta _1}\left\| L \right\|}}{{1 - {\delta _1}}} \cdot \left( {\left\| {\varepsilon \left( k \right)} \right\|{\rm{ + }}\left\| {\varphi \left( k \right)} \right\|{\rm{ + }}\left\| {\phi \left( k \right)} \right\|} \right) +\nonumber\\ &\qquad \frac{{{\delta _2}{\beta ^k}}}{{1 - {\delta _1}}}\le \frac{{3{\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{{\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (11)

    接着有如下不等式成立:

    $ \begin{align} \left\| {e\left( k \right)} \right\|\le \frac{{3\sqrt n {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| + \frac{{\sqrt n {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (12)

    其中, , ${e_b}(k) = \left[{{e_{b1}}(k), \cdots, {e_{bn}}(k)} \right]$, ${e_c}(k) = \left[{{e_{c1}}(k), \cdots, {e_{cn}}(k)} \right]$,

    注意到

    $ \begin{equation} \left\| {\tilde e( k )} \right\| + \left\| {\bar e( k )} \right\| \le \sqrt {6( {n - 1} )} \left\| {e( k )} \right\| \end{equation} $

    (13)

    于是有

    $ \begin{align} \left\| {\omega ( k )} \right\| &= \left\| {\tilde e( k ) - \bar e\left( k \right)} \right\| \le\nonumber\\ & \left\| {\tilde e\left( k \right)} \right\| + \left\| {\bar e\left( k \right)} \right\|\le\nonumber\\ & \frac{{3\sqrt {6n( {n - 1} )} {\delta _1}}}{{1 - {\delta _1}}}\left\| L \right\| \cdot \left\| {\psi \left( k \right)} \right\| +\nonumber\\ & \frac{{\sqrt {6n( {n - 1} )} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^k} \end{align} $

    (14)

    把式(14)代入式(8)可得

    $ \begin{align} \left\| {\psi \left( k \right)} \right\| &\le M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^k}+ \nonumber\\ &\frac{{M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}} {\delta _1}3\sqrt {6n\left( {n - 1} \right)} \left\| L \right\|}}{{1 - {\delta _1}}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}}\left\| {\psi \left( s \right)} \right\|} + M\left\| {{Q_2}} \right\|{\alpha ^{k - 1}}\times\nonumber\\ &\sum\limits_{s = 0}^{k - 1} {{\alpha ^{ - s}} \frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}} {{1 - {\delta _1}}}{\beta ^s}} \end{align} $

    (15)

    接下来的部分, 将证明下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| \le W{\beta ^k}.\end{equation} $

    (16)

    其中, $W = \max \left\{ {{\Theta _1}, {\Theta _2}} \right\}$,

    首先, 证明对任意的$\rho > 1$, 下列不等式成立.

    $ \begin{equation} \left\| {\psi \left( k \right)} \right\| < \rho W{\beta ^k} \end{equation} $

    (17)

    利用反证法, 先假设式(17)不成立, 则必将存在${k^ * } > 0$使得并且当$k \in \left({0, {k^ * }} \right)$时$\left\| {\psi \left(k \right)} \right\| < \rho W{\beta ^k}$成立.因此, 根据式(17)可得:

    $ \begin{align*} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le\\ &\qquad M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} +\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}M\times \end{align*} $

    $ \begin{align*} &\qquad\sum\limits_{s = 0}^{{k^ * } - 1} {\alpha ^{ - s}}\left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot \left\| {\psi \left( s \right)} \right\|}}{{1 - {\delta _1}}}} \right]+ \\ &\qquad M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}}}{{1 - {\delta _1}}}{\beta ^s}} \right]} < \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}} + \rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}}\times\\ &\qquad \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{3\sqrt {6n\left( {n - 1} \right)} {\delta _1}\left\| L \right\| \cdot W{\beta ^s}}} {{1 - {\delta _1}}}} \right]} +\\ &\qquad\rho M\left\| {{Q_2}} \right\|{\alpha ^{{k^ * } - 1}} \sum\limits_{s = 0}^{{k^ * } - 1} {{\alpha ^{ - s}} \left[ {\frac{{\sqrt {6n\left( {n - 1} \right)} {\delta _2}{\beta ^s}}}{{1 - {\delta _1}}}} \right]=} \\ &\qquad \rho M\left\| {\psi \left( 0 \right)} \right\|{\alpha ^{{k^ * }}}- \nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\alpha ^{{k^ * }}}+\nonumber\\ &\qquad \rho \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}}{\beta ^{{k^ * }}} \end{align*} $

    1) 当$W = M\left\| {\psi \left(0 \right)} \right\|$时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\| - \nonumber\\ &\qquad \frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} \ge 0 \end{aligned} \end{equation*} $

    所以可得到

    $ \begin{equation} \rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\| \le \rho M\left\| {\psi \left( 0 \right)} \right\|{\beta ^{{k^ * }}}=\rho W{\beta ^{{k^ * }}} \end{equation} $

    (18)

    2) 当时, 则有

    $ \begin{equation*} \begin{aligned} &M\left\| {\psi \left( 0 \right)} \right\|- \nonumber\\ &\qquad\frac{{M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} \left( {3{\delta _1}\left\| L \right\|W + {\delta _2}} \right)}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right)}} < 0 \end{aligned} \end{equation*} $

    所以有

    $ \begin{align} &\rho W{\beta ^{{k^ * }}} \le \left\| {\psi \left( {{k^ * }} \right)} \right\|\le\nonumber\\ & \frac{{\rho {\delta _2}M\left\| {{Q_2}} \right\|\sqrt {6n\left( {n - 1} \right)} {\beta ^{{k^ * }}}}}{{\left( {\beta - \alpha } \right)\left( {1 - {\delta _1}} \right) - 3{\delta _1}M\left\| {{Q_2}} \right\|\left\| L \right\|\sqrt {6n\left( {n - 1} \right)} }}=\nonumber\\ &\rho W{\beta ^{{k^ * }}} \end{align} $

    (19)

    根据以上结果, 式(18)和式(19)都与假设相矛盾.这说明原命题成立, 即对任意的$\rho > 1$, 式(17)成立.易知, 如果$\rho \to 1$, 则式(16)成立.根据式(16)可知, 当$k \to + \infty $时, 有, 则系统(5)是收敛的.由$\psi \left(k \right)$的定义可知, 系统(1)能够实现渐近一致.

    定理2.  对于系统(1), 如果定理1中的条件成立, 并且控制器(2)中的设计参数满足如下条件,

    $ {\delta _1} \in \left( {\frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}}, 1} \right)\\ {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } $

    那么触发序列中的类Zeno行为将被排除.

    证明.  易知排除类Zeno行为的关键是要证明不等式$k_{p + 1}^i - k_p^i > 1$成立.根据事件触发机制可知, 下一个触发时刻将会发生在触发函数(4)大于0时.进而可得到如下不等式

    $ \begin{align} &\left| {{e_{bi}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{ci}}\left( {k_{p + 1}^i} \right)} \right| + \left| {{e_{gi}}\left( {k_{p + 1}^i} \right)} \right|\ge\nonumber\\ &\qquad{\delta _1}\left| {{b_i}\left( {k_p^i} \right)} \right| + {\delta _1}\left| {{c_i}\left( {k_p^i} \right)} \right| +\nonumber\\ &\qquad {\delta _1}\left| {{g_i}\left( {k_p^i} \right)} \right| + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{align} $

    (20)

    定义, .结合式(20), 可得到下式

    $ \begin{equation} {G_i}\left( {k_{p + 1}^i} \right) \ge {\delta _1}{H_i}\left( {k_p^i} \right) + {\delta _2}{\beta ^{k_{p + 1}^i}} \end{equation} $

    (21)

    结合式(16)和式(21)可得

    $ \begin{align} {\delta _2}{\beta ^{k_{p + 1}^i}} &\le {G_i}\left( {k_{p + 1}^i} \right) - {\delta _1}{H_i}\left( {k_p^i} \right)\le\nonumber\\ & \left\| L \right\|\left( {\left\| {\psi \left( {k_p^i} \right)} \right\| + \left\| {\psi \left( {k_{p + 1}^i} \right)} \right\|} \right)\le\nonumber\\ & W\left\| L \right\|\left( {{\beta ^{k_p^i}} + {\beta ^{k_{p + 1}^i}}} \right) \end{align} $

    (22)

    求解上式得

    $ \begin{equation} \left( {{\delta _2} - \left\| L \right\|W} \right){\beta ^{k_{p + 1}^i}} \le \left\| L \right\|W{\beta ^{k_p^i}} \end{equation} $

    (23)

    根据式(23)可得

    $ \begin{equation} k_{p + 1}^i - k_p^i > \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}} } {\ln \beta } \end{equation} $

    (24)

    基于(24)易知当时, 有如下不等式成立

    $ \begin{equation} \dfrac{{\ln \dfrac{{W\left\| L \right\|}}{{{\delta _2} - W\left\| L \right\|}}}} {\ln \beta } > 1 \end{equation} $

    (25)

    此外, 因为$W = M\left\| {\psi \left(0 \right)} \right\|$以及

    $ \begin{equation} {\delta _1} > \frac{{\left( {\beta - \alpha } \right)}}{{\left( {\beta - \alpha } \right) + 3\sqrt {6n\left( {n - 1} \right)} M\left\| {{Q_{\rm{2}}}} \right\|\left\| L \right\|}} \end{equation} $

    (26)

    又可以得出

    $ \begin{equation} {\delta _2} > \frac{{\left\| L \right\|\left\| {\psi \left( 0 \right)} \right\|M\left( {1 + \beta } \right)}}{\beta } = \frac{{\left\| L \right\|W\left( {1 + \beta } \right)}}{\beta } \end{equation} $

    (27)

    该式意味着式(25)成立, 又结合式(24)易知$k_{p + 1}^i - k_p^i > 1$, 即排除类Zeno行为的条件得已满足.

    注2.类Zeno行为广泛存在于基于事件触发控制机制的离散系统中.然而, 当前极少有文献研究如何排除类Zeno行为, 尤其是对于三阶多智能体动态模型.定理2给出了排除三阶离散多智能体系统的类Zeno行为的参数条件.

    本部分将利用一个仿真实验来验证本文所提算法及理论的正确性和有效性.假设三阶离散多智能体系统(1)包含6个智能体, 且有向加权通信拓扑结构如图 1所示, 权重取值为0或1, 可以明显地看出该图包含有向生成树(满足假设1).

    图 1  6个智能体通信拓扑结构图
    Fig. 1  The communication topology with six agents

    通过简单的计算可得, ${\mu _1} = 0$, ${\mu _2} = 0.6852$, ${\mu _3} = 1.5825 + 0.3865$i, ${\mu _4} = 1.5825 - 0.3865$i, ${\mu _5} = 3.2138$, ${\mu _6} = 3.9360$.令$M = 1$, 结合定理1和定理2可得到$0.035 < {\delta _1} < 1$, ${\delta _2} > 44.0025$, $0 < \alpha < \beta < 1$.令${\delta _1} = 0.2$, ${\delta _2} = 200$, $\alpha = 0.6$, $\beta = 0.9$, $\lambda = 0.02$, $\eta = 0.3$, $\gamma = 0.5$, 不难验证满足引理1的条件并且计算可知$\rho \left({{Q_1}} \right) = 0.9958 < 1$.三阶离散多智能体系统(1)的一致性结果如图 2~图 6所示.根据定理1可知, 基于控制器(2)和事件触发函数(4)的系统(1)能实现一致.从图 2~图 6可以看出, 仿真结果与理论分析符合.

    图 2  三阶离散多智能体系统的位置轨迹图
    Fig. 2  The trajectories of position in third-order discrete-time multi-agent systems
    图 3  三阶离散多智能体系统的速度轨迹图
    Fig. 3  The trajectories of speed in third-order discrete-time multi-agent systems
    图 4  三阶离散多智能体系统的加速度轨迹图
    Fig. 4  The trajectories of acceleration in third-order discrete-time multi-agent systems
    图 5  三阶离散多智能体系统的控制轨迹图
    Fig. 5  The trajectories of control in third-order discrete-time multi-agent systems
    图 6  100次迭代内所有智能体的触发时刻
    Fig. 6  Triggering instants of all agents within 100 iterations

    图 2~图 4分别表征了系统(1)中所有智能体的位置、速度和加速度的轨迹, 从图中可以看出以上3个变量确实达到了一致.图 5展示了控制输入的轨迹.为了更清楚地体现事件触发机制的优点, 图 6给出了0$ \sim $100次迭代内的各智能体的触发时刻轨迹.从图 6可以看出, 本文设计的事件触发协议确实达到了减少更新次数, 节省资源的目的.

    针对三阶离散多智能体系统的一致性问题, 构造了一个新颖的事件触发一致性协议, 分析得到了在通信拓扑为有向加权图且包含生成树的条件下, 系统中所有智能体的位置状态、速度状态和加速度状态渐近收敛到一致状态的充分条件.同时, 该条件指出了通信拓扑的Laplacian矩阵特征值和系统的耦合强度对系统一致性的影响.另外, 给出了排除类Zeno行为的参数条件.仿真实验结果也验证了上述结论的正确性.将文中获得的结论扩展到拓扑结构随时间变化的更高阶多智能体网络是极有意义的.这将是未来研究的一个具有挑战性的课题.


  • 本文责任编委 赖剑煌
  • 图  1  所有选择分块整体均值与各个分块均值间差值关系图

    Fig.  1  The flowchart of differences relationship between the overall mean of all selected blocks and each block mean

    图  2  原始的水印和生成的零水印

    Fig.  2  Original watermarking and generated zero watermarking

    图  3  原始的测试图像

    Fig.  3  Original test image

    图  4  不同分块大小对本算法性能的影响

    Fig.  4  The effect of the algorithm performance for different block size

    图  5  不同分块大小实验结果

    Fig.  5  Experimental results with different block size

    图  6  本文算法安全性测试

    Fig.  6  Security testing of the proposed algorithm

    图  7  生成的零水印与伪随机二值信号间的相似度

    Fig.  7  Similarities between the generated zero watermarking and random binary signal

    表  1  所有选择分块整体均值与分块均值间差值关系变化情况(%)

    Table  1  The changes of difference relationship between the overall mean of all selected blocks and block mean (%)

    图像集攻击方式 $P_{1}$ $P_{2}$ $P_{3}$ $P_{4}$
    JPEG压缩(20)2.54170.850621.1772
    中值滤波(3 × 3)2.70670.720221.0870
    Kodak维纳滤波(3 × 3)2.68600.740621.033421.0992
    椒盐噪声(0.1)10.60742.753322.5952
    高斯噪声(0.1)13.56413.160722.6128
    JPEG压缩(20)3.30642.686733.8072
    中值滤波(3 × 3)3.34762.478633.8938
    SIPI维纳滤波(3 × 3)3.14662.422033.613534.2121
    椒盐噪声(0.1)12.02459.935935.5716
    高斯噪声(0.1)13.632111.831535.8746
    JPEG压缩(20)3.00590.468412.9183
    中值滤波(3 × 3)3.28480.441112.8613
    UCID维纳滤波(3 × 3)2.99850.399612.877912.9180
    椒盐噪声(0.1)13.43091.545914.1185
    高斯噪声(0.1)19.50501.799514.3138
    下载: 导出CSV

    表  2  组合攻击

    Table  2  Combination attacks

    JPEG压缩中值滤波维纳滤波椒盐噪声高斯噪声
    攻击方式1203 × 33 × 30.10.1
    攻击方式2155 × 55 × 50.20.2
    攻击方式3107 × 77 × 70.30.3
    下载: 导出CSV

    表  3  在给定阈值条件下, 所有选择分块整体均值与分块均值间差值关系变化情况(%)

    Table  3  The changes of difference relationship between the overall mean of all selected blocks and block mean with a given threshold (%)

    图像集阈值$T$攻击方式 $P_{1}$$P_{2}$ $P_{3}$$P_{4}$
    Kodak10攻击方式16.33251.641921.7064
    攻击方式212.27793.105821.033422.4345
    攻击方式322.43674.888723.4951
    20攻击方式15.42442.877539.5189
    攻击方式211.90986.141838.210041.3628
    攻击方式321.638310.018643.5223
    SIPI10攻击方式17.06205.849434.6629
    攻击方式214.605610.555933.613536.0441
    攻击方式325.864916.038438.2140
    20攻击方式14.74136.257059.5355
    攻击方式210.297912.762458.079361.7652
    攻击方式317.472820.536664.3733
    UCID10攻击方式18.55280.918113.4140
    攻击方式219.87701.994312.877914.1996
    攻击方式339.36533.716915.6343
    20攻击方式18.12392.101326.2574
    攻击方式218.25614.627925.064127.9303
    攻击方式333.95658.395030.4609
    下载: 导出CSV

    表  4  不同载体图像生成的特征信息和零水印均衡性测试

    Table  4  Balance test of generated feature information and zero watermarking from different cover images

    特征信息$B$ 最终生成的零水印
    $N_{0}$$N_{1}$$E$$N_{0}$$N_{1}$$E$
    Aerial1 6522 4440.19342 0552 0410.0034
    Barbara2 0832 0130.01712 0862 0100.0186
    Boat1 3662 7300.33302 0552 0410.0034
    Couple1 8252 2710.10891 9982 0980.0244
    Elain2 0882 0080.01952 0852 0110.0181
    Frog2 0272 0690.01032 0422 0540.0029
    Goldhill2 2261 8700.08692 0052 0910.0210
    Zelda1 9432 1530.05132 0782 0180.0146
    平均值1 9012 1950.10262 0512 0460.0133
    下载: 导出CSV

    表  5  不同算法生成的特征信息和零水印均衡性测试

    Table  5  Balance test of generated feature information and zero watermarking from different algorithms

    8幅载体图像均衡性结果的平均值($E$)
    特征信息$B$最终生成的零水印
    本文0.10260.0133
    文献[13]0.00460.0000
    文献[14]0.17070.0130
    文献[15]0.00870.0060
    文献[16]0.01110.0107
    下载: 导出CSV

    表  6  不同载体图像零水印间的相似度

    Table  6  Similarities between the generated zero watermarking from different cover images

    AerialBarbaraBoatCoupleElainFrogGoldhillZelda
    Aerial1.00000.51490.54980.49000.48100.46510.55130.5344
    Barbara0.51491.00000.53300.48780.53000.48970.49440.4850
    Boat0.54980.53301.00000.58810.47560.47340.58940.4465
    Couple0.49000.48780.58811.00000.48800.49510.54610.4292
    Elain0.48100.53000.47560.48801.00000.48320.56590.5051
    Frog0.46510.48970.47340.49510.48321.00000.48900.4912
    Goldhill0.55130.49440.58940.54610.56590.48901.00000.5002
    Zelda0.53440.48500.44650.42920.50510.49120.50021.0000
    下载: 导出CSV

    表  7  不同算法零水印间的相似度

    Table  7  Similarities between the generated zero watermarking from different algorithms

    本文[13][14][15][16]
    最大值0.58940.59520.57980.64180.6292
    最小值0.42920.49000.49540.50170.5266
    平均值0.50520.49710.50930.50400.5044
    方差0.00160.00220.00080.00220.0020
    下载: 导出CSV

    表  8  抗噪声攻击实验结果

    Table  8  Experimental results against noise attacks

    攻击
    方式
    噪声
    强度
    PSNRNC
    本文[13][14][15][16]
    椒盐
    噪声
    0.115.39920.95100.69010.63180.78590.8789
    0.212.36620.92390.62350.57540.74610.8213
    0.310.61690.89320.59270.54580.73160.7741
    0.49.38300.86400.57180.52920.70400.7347
    0.58.40760.82890.55940.51390.67000.6960
    平均值11.23450.89220.60750.55920.72750.7810
    高斯
    噪声
    0.117.17520.97560.79150.70840.89100.9298
    0.213.37110.97120.78850.70940.87690.9263
    0.310.63980.95500.78930.70160.82710.9207
    0.48.76130.92410.77310.68210.73320.9067
    0.57.48530.88040.75000.66170.61970.8783
    平均值11.48650.94130.77850.69270.78960.9124
    下载: 导出CSV

    表  9  抗滤波攻击实验结果

    Table  9  Experimental results against filtering attacks

    攻击
    方式
    窗口
    大小
    PSNRNC
    本文[13][14][15][16]
    中值
    滤波
    3 × 330.07450.99220.91320.90060.96780.9816
    5 × 527.40160.98460.88260.85050.95030.9650
    7 × 726.14520.97540.86520.80890.93530.9482
    9 × 925.13670.96690.84950.77460.92260.9335
    11 × 1124.37520.95900.83480.74290.91060.9207
    平均值26.62660.97560.86910.81550.93730.9498
    维纳
    滤波
    3 × 333.39940.99590.94170.92110.97330.9878
    5 × 530.79470.99150.92370.87620.96000.9745
    7 × 729.34030.98550.90940.83730.94690.9598
    9 × 928.26800.97900.89650.80620.93350.9455
    11 × 1127.43570.97100.88760.77920.92280.9346
    平均值29.84760.98460.91180.84400.94730.9605
    下载: 导出CSV

    表  10  抗JPEG压缩攻击实验结果

    Table  10  Experimental results against JPEG compression attacks

    品质百分数
    (%)
    PSNRNC
    本文[13][14][15][16]
    525.54190.95590.86400.68030.89410.9054
    1027.99580.98560.89980.77870.93640.9513
    1529.32450.98370.91380.81880.94980.9661
    2030.25520.98660.92270.84680.95710.9727
    2530.96690.98610.92740.87210.96070.9780
    3031.54070.99550.93170.88450.96510.9813
    3532.04160.99320.93580.89660.96560.9835
    4032.43190.99220.93810.90190.96800.9864
    4532.81860.99410.94240.91350.96880.9870
    5033.15620.99520.94310.92210.97060.9879
    平均值30.60730.98680.92190.85150.95360.9700
    下载: 导出CSV

    表  11  抗常规图像处理组合攻击实验结果

    Table  11  Experimental results against common image processing combination attacks

    攻击方式PSNRNC
    本文[13][14][15][16]
    中值滤波(5 × 5) +椒盐噪声(0.3)10.53090.89010.57840.52990.72350.7685
    中值滤波(5 × 5) +高斯噪声(0.3)10.46930.95010.74340.64490.81410.9107
    维纳滤波(5 × 5) +椒盐噪声(0.3)10.58010.89260.58360.53410.72440.7699
    维纳滤波(5 × 5) +高斯噪声(0.3)10.53710.95660.76410.65830.82420.9139
    中值滤波(5 × 5) + JPEG压缩(10)26.10200.97620.86760.72120.92190.9341
    维纳滤波(5 × 5) + JPEG压缩(10)27.18700.98190.88350.74250.92640.9429
    JPEG压缩(10) +椒盐噪声(0.3)10.55400.89290.58660.54810.72680.7714
    JPEG压缩(10) +高斯噪声(0.3)10.55600.95510.76100.69200.82280.9099
    JPEG压缩(10) +放大2倍+缩小0.5倍28.35820.98560.90390.81120.94170.9555
    逆时针旋转2度+ JPEG压缩(10)17.63290.86280.68540.64570.80100.8060
    平均值18.85760.93560.76410.68790.84380.8772
    下载: 导出CSV

    表  12  抗偏移行列攻击实验结果

    Table  12  Experimental results against row and column shifting attacks

    攻击方式PSNRNC
    本文[13][14][15][16]
    右偏移2列21.28790.94890.77960.84250.90560.9129
    左偏移2列21.43240.94970.78310.84250.90680.9118
    上偏移2行21.97570.95220.79660.84730.91720.9237
    下偏移2行21.68930.95040.78970.84450.91040.9198
    右偏移2列+上偏移2行19.80690.92710.74440.79190.88270.8882
    左偏移2列+上偏移2行19.84130.92200.74680.79060.87920.8862
    右偏移2列+下偏移2行19.57170.92390.74100.78820.87280.8807
    左偏移2列+下偏移2行19.73640.92480.74230.79100.87470.8837
    平均值20.12910.92960.75280.80120.88400.8917
    下载: 导出CSV

    表  13  抗偏移行列组合攻击实验结果

    Table  13  Experimental results against row and column shifting combination attacks

    攻击方式PSNRNC
    本文[13][14][15][16]
    右偏移2列+上偏移2行+逆时针旋转2度17.14980.85610.67870.69870.82250.8287
    左偏移2列+上偏移2行+逆时针旋转2度17.15850.85540.67600.70190.77640.7808
    右偏移2列+下偏移2行+放大2倍+缩放0.5倍19.96530.92420.74790.78710.87330.8811
    左偏移2列+下偏移2行+缩放0.5倍+放大2倍20.95190.92540.76740.77620.87270.8839
    平均值18.81660.89930.72680.73040.83780.8503
    下载: 导出CSV

    表  14  抗缩放攻击实验结果

    Table  14  Experimental results against scaling attacks

    插值方法攻击方式PSNRNC
    本文[13][14][15][16]
    bilinear缩小0.25倍+放大4倍25.47630.97860.85840.81080.92460.9475
    缩小0.5倍+放大2倍28.34910.99170.89940.88250.94920.9735
    放大4倍+缩小0.25倍34.28620.99760.94830.94540.97420.9898
    放大2倍+缩小0.5倍33.59350.99720.94330.93970.97250.9891
    bicubic缩小0.25倍+放大4倍26.45440.99100.87100.83480.93990.9663
    缩小0.5倍+放大2倍29.90150.99680.91290.91230.96260.9875
    放大4倍+缩小0.25倍39.38010.99890.97100.96990.98590.9954
    放大2倍+缩小0.5倍39.05220.99870.97020.96710.98550.9950
    nearest缩小0.25倍+放大4倍23.13040.95640.82010.69590.90190.9089
    缩小0.5倍+放大2倍25.68810.97900.86530.84560.94300.9522
    放大4倍+缩小0.25倍+$\infty $1.00001.00001.00001.00001.0000
    放大2倍+缩小0.5倍+$\infty $1.00001.00001.00001.00001.0000
    平均值30.53120.99050.92170.90030.96160.9754
    下载: 导出CSV

    表  15  抗仅缩小或放大缩放攻击实验结果

    Table  15  Experimental results against only reduce/enlarge scaling attacks

    插值方法攻击方式NC
    本文[13][14][15][16]
    bilinear缩小0.5倍0.99630.63650.90790.95870.9856
    缩小2倍0.99820.75030.96070.98180.9925
    放大4倍0.99820.56570.96510.98370.9928
    bicubic缩小0.5倍0.99760.63710.92020.96430.9896
    放大2倍0.99890.75070.97950.99140.9965
    放大4倍0.99880.56580.97910.99060.9960
    nearest缩小0.5倍0.97900.62020.84560.94320.9522
    放大2倍1.00000.75131.00001.00001.0000
    放大4倍1.00000.56930.99991.00001.0000
    平均值0.99630.64970.95090.97930.9895
    下载: 导出CSV

    表  16  抗旋转攻击实验结果

    Table  16  Experimental results against rotation attacks

    插值
    方法
    攻击
    方式
    PSNRNC
    本文[13][14][15][16]
    bilinear20.09280.92090.75140.78120.87500.8809
    -1°20.21720.92160.74760.77530.87810.8812
    16.17390.82090.64070.66400.76700.7680
    -3°16.30610.82230.61720.66450.77200.7713
    14.59640.75710.59450.62420.70970.7081
    -5°14.72100.76070.56450.62640.71910.7177
    10°12.86640.66330.53690.58440.62920.6315
    -10°12.96980.67090.51400.58250.64360.6416
    30°10.87970.55820.48800.52350.54870.5541
    -30°10.93890.56340.50930.52360.55250.5489
    bicubic19.87600.92080.74660.78150.87390.8797
    -1°19.99590.92110.74370.77730.87760.8802
    16.07030.82050.63760.66640.76550.7672
    -3°16.19950.82210.61470.66670.77100.7702
    14.52130.75730.59340.62470.70830.7072
    -5°14.64400.76100.56230.62800.71900.7171
    10°12.81520.66310.53590.58470.62900.6313
    -10°12.91750.67080.51470.58470.64340.6410
    30°10.84830.55820.48770.52450.54880.5538
    -30°10.90750.56300.50830.52390.55200.5491
    nearest19.65710.92110.74450.78180.87520.8796
    -1°19.77490.92140.74030.77800.87790.8821
    15.97270.82030.63650.66630.76400.7680
    -3°16.09950.82210.61500.66680.77130.7717
    14.45310.75690.59280.62670.70710.7080
    -5°14.57430.76100.56250.62470.71800.7171
    10°12.77040.66360.53450.58430.62810.6309
    -10°12.87150.67050.51410.58360.64250.6421
    30°10.82070.55790.48950.52120.54930.5539
    -30°10.88000.56340.50890.52240.55300.5486
    平均值14.88110.74580.59490.63560.70900.7101
    下载: 导出CSV

    表  17  本文算法与其他算法抗攻击性能的提高率(%)

    Table  17  Improvement performance against attacks compared this algorithm with other algorithms (%)

    攻击方式[13][14][15][16]
    椒盐噪声47602314
    高斯噪声2136193
    中值滤波122043
    维纳滤波81743
    JPEG压缩71632
    常规信号组合2236117
    偏移行列231654
    偏移行列组合242376
    先缩放$x$倍, 再缩放1/$x$倍71032
    仅缩小或放大$x$倍53521
    旋转251755
    平均值232385
    下载: 导出CSV

    表  18  不同算法在SIPI图像数据集的实验结果

    Table  18  Experimental results on the SIPI image database from different algorithms

    攻击方式PSNR本文[13][14][15][16]
    椒盐噪声11.00860.85870.61640.56900.75420.7940
    高斯噪声12.25000.91700.75990.66110.75330.9042
    中值滤波24.85800.96090.84110.69040.91600.9365
    维纳滤波27.51590.96970.88780.71060.93280.9484
    JPEG压缩29.52650.97700.90910.75140.94560.9663
    常规信号组合15.68690.89590.71450.62110.79290.8560
    偏移行列19.82690.90850.74600.67550.87030.8756
    偏移行列组合17.50260.82220.66880.61840.77120.7743
    缩放29.04960.98430.91050.76220.95360.9721
    旋转13.72180.67980.55670.56650.64220.6416
    平均值20.09470.89740.76110.66260.83320.8669
    下载: 导出CSV

    表  19  不同算法在SIPI图像数据集实验结果的方差

    Table  19  The variance of experimental results on the SIPI image database from different algorithms

    攻击方式本文[13][14][15][16]
    椒盐噪声0.00260.00300.00770.00510.0034
    高斯噪声0.00250.00550.02050.03380.0030
    中值滤波0.00090.00430.02420.00220.0020
    维纳滤波0.00080.00260.02600.00160.0015
    JPEG压缩0.00060.00110.04050.00080.0005
    常规信号组合0.00330.00340.01430.01820.0034
    偏移行列0.00400.00660.01800.00720.0065
    偏移行列组合0.00850.00530.01000.01060.0107
    缩放0.00020.00120.04010.00070.0004
    旋转0.00850.00410.00500.00800.0081
    平均值0.00320.00370.02060.00880.0040
    下载: 导出CSV

    表  20  不同算法构造零水印运行时间(s)

    Table  20  The running time for constructing zero watermarking from different algorithms (s)

    本文[13][14][15][16]
    Aerial0.03430.55540.35416.77820.1607
    Barbara0.03280.54290.34946.74240.1591
    Boat0.03740.54290.35106.82970.1560
    Couple0.03280.54760.34796.82820.1560
    Elain0.03280.54910.35106.80790.1607
    Frog0.03120.54910.34166.78140.1513
    Goldhill0.03430.54440.34946.78140.1576
    Zelda0.03280.56000.35576.81720.1622
    平均时间0.03350.54890.35006.79580.1580
    下载: 导出CSV
  • [1] 綦科, 谢冬青.基于第二代Bandelet变换的抗几何攻击图像水印.自动化学报, 2012, 38(10):1646-1653 http://www.aas.net.cn/CN/abstract/abstract17774.shtml

    Qi Ke, Xie Dong-Qing. Watermarking scheme against geometrical attacks based on second generation Bandelet. Acta Automatica Sinica, 2012, 38(10):1646-1653 http://www.aas.net.cn/CN/abstract/abstract17774.shtml
    [2] 林晓丹.基于高斯混合模型的DCT域水印检测方法.自动化学报, 2012, 38(9):1445-1448 http://www.aas.net.cn/CN/abstract/abstract17754.shtml

    Lin Xiao-Dan. DCT-domain watermark detection using Gaussian mixture model. Acta Automatica Sinica, 2012, 38(9):1445-1448 http://www.aas.net.cn/CN/abstract/abstract17754.shtml
    [3] 崔汉国, 刘健鑫, 李正民.基于金字塔技术的STL模型数字水印算法.自动化学报, 2013, 39(6):852-860 http://www.aas.net.cn/CN/abstract/abstract18111.shtml

    Cui Han-Guo, Liu Jian-Xin, Li Zheng-Min. STL model watermarking algorithm based on pyramid technique. Acta Automatica Sinica, 2013, 39(6):852-860 http://www.aas.net.cn/CN/abstract/abstract18111.shtml
    [4] 熊祥光, 韦立, 谢刚.基于3D-DCT和SVD的鲁棒彩色图像水印算法.计算机工程与科学, 2015, 37(6):1039-1100 http://or.nsfc.gov.cn/handle/00001903-5/341270

    Xiong Xiang-Guang, Wei Li, Xie Gang. A robust color image watermarking algorithm based on 3D-DCT and SVD. Computer Engineering and Science, 2015, 37(6):1039-1100 http://or.nsfc.gov.cn/handle/00001903-5/341270
    [5] Swaminathan A, Mao Y N, Wu M. Robust and secure image hashing. IEEE Transaction on Information Forensics and Security, 2006, 1(2):215-230 doi: 10.1109/TIFS.2006.873601
    [6] 牛夏牧, 焦玉华.感知哈希综述.电子学报, 2008, 36(7):1405-1411 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxu200807028&dbname=CJFD&dbcode=CJFQ

    Niu Xia-Mu, Jiao Yu-Hua. An overview of perceptual hashing. Acta Electronica Sinica, 2008, 36(7):1405-1411 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxu200807028&dbname=CJFD&dbcode=CJFQ
    [7] 温泉, 孙锬锋, 王树勋.零水印的概念与应用.电子学报, 2003, 31(2):214-216 https://www.wenkuxiazai.com/doc/b60cb0f027284b73f24250b6.html

    Wen Quan, Sun Tan-Feng, Wang Shu-Xun. Concept and application of zero-watermark. Acta Electronica Sinica, 2003, 31(2):214-216 https://www.wenkuxiazai.com/doc/b60cb0f027284b73f24250b6.html
    [8] 叶天语, 马兆丰, 钮心欣, 杨义先.强鲁棒零水印技术.北京邮电大学学报, 2010, 33(3):126-129 http://www.cqvip.com/QK/90982A/201008/34838667.html

    Ye Tian-Yu, Ma Zhao-Feng, Niu Xin-Xin, Yang Yi-Xian. A zero-watermark technology with strong robustness. Journal of Beijing University of Posts and Telecommunications, 2010, 33(3):126-129 http://www.cqvip.com/QK/90982A/201008/34838667.html
    [9] 金炜, 励金祥, 尹曹谦.一种基于可视密码的轮廓小波图像零水印方案.光电子·激光, 2009, 20(5):653-656 https://mall.cnki.net/qikan-I-I2-JSJY-2006-01.html

    Jin Wei, Li Jin-Xiang, Yin Cao-Qian. An image zero-watermarking scheme based on visual cryptography utilizing contour-wavelet. Journal of Optoelectronics·Laser, 2009, 20(5):653-656 https://mall.cnki.net/qikan-I-I2-JSJY-2006-01.html
    [10] 赵春晖, 刘巍.基于分块压缩感知的图像半脆弱零水印算法.自动化学报, 2012, 38(4):609-617 http://www.aas.net.cn/CN/abstract/abstract17715.shtml

    Zhao Chun-Hui, Liu Wei. Block compressive sensing based image semi-fragile zero-watermarking algorithm. Acta Automatica Sinica, 2012, 38(4):609-617 http://www.aas.net.cn/CN/abstract/abstract17715.shtml
    [11] 付剑晶, 王珂.基于第一主成分方向稳定性的图像零水印.中国图象图形学报, 2012, 17(7):756-769 doi: 10.11834/jig.20120703

    Fu Jian-Jing, Wang Ke. Image zero-watermark based on direction stability of first principal component vector. Journal of Image and Graphics, 2012, 17(7):756-769 doi: 10.11834/jig.20120703
    [12] 周武杰, 郁梅, 禹思敏, 蒋刚毅, 葛丁飞.一种基于超混沌系统的立体图像零水印算法.物理学报, 2012, 61(8):080701 http://d.old.wanfangdata.com.cn/Periodical/wlxb201208017

    Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, 2012, 61(8):080701 http://d.old.wanfangdata.com.cn/Periodical/wlxb201208017
    [13] 曲长波, 杨晓陶, 袁铎宁.小波域视觉密码零水印算法.中国图象图形学报, 2014, 19(3):365-372 doi: 10.3969/j.issn.1672-6200.2005.02.018

    Qu Chang-Bo, Yang Xiao-Tao, Yuan Duo-Ning. Zero-watermarking visual cryptography algorithm in the wavelet domain. Journal of Image and Graphics, 2014, 19(3):365-372 doi: 10.3969/j.issn.1672-6200.2005.02.018
    [14] 叶天语.基于方差的奇异值分解域鲁棒零水印算法.光子学报, 2011, 40(6):961-966 http://www.opticsjournal.net/abstract.htm?id=OJ1106240002214A7D0F

    Ye Tian-Yu. A robust zero-watermarking algorithm using variance in singular value decomposition domain. Acta Photonica Sinica, 2011, 40(6):961-966 http://www.opticsjournal.net/abstract.htm?id=OJ1106240002214A7D0F
    [15] 叶天语.抗JPEG压缩和几何攻击的鲁棒零水印算法.光子学报, 2012, 41(2):210-217 http://edu.wanfangdata.com.cn/Periodical/Detail/wxjyyy201414011

    Ye Tian-Yu. A robust zero-watermarking algorithm resisting JPEG compression and geometric attacks. Acta Photonica Sinica, 2012, 41(2):210-217 http://edu.wanfangdata.com.cn/Periodical/Detail/wxjyyy201414011
    [16] 宋伟, 侯建军, 李赵红, 黄亮.一种基于Logistic混沌系统和奇异值分解的零水印算法.物理学报, 2009, 58(7):4449-4456 doi: 10.7498/aps.58.4449

    Song Wei, Hou Jian-Jun, Li Zhao-Hong, Huang Liang. A novel zero-watermarking algorithm based on Logistic chaotic system and singular value decomposition. Acta Physica Sinica, 2009, 58(7):4449-4456 doi: 10.7498/aps.58.4449
    [17] Rani A, Bhullar A K, Dangwal D, Kumar S. A zero-watermarking scheme using discrete wavelet transform. Procedia Computer Science, 2015, 70:603-609 doi: 10.1016/j.procs.2015.10.046
    [18] Sun L, Xu J C, Zhang X X, Dong W, Tian Y. A novel generalized Arnold transform-based zero-watermarking scheme. Applied Mathematics and Information Sciences, 2015, 9(4):2023-2035 https://www.researchgate.net/publication/307616012_Novel_zero-watermarking_scheme_based_on_DWT-DCT
    [19] The USC-SIPI image database[Online], available: http://sipi.usc.edu/database/, May 31, 2016
    [20] UCID-uncompressed colour image database[Online], available: http://homepages.lboro.ac.uk/~cogs/datasets/UCID/ucid.html, May 31, 2016
    [21] Kodak lossless true color image suite[Online], available: http://r0k.us/graphics/kodak/, May 31, 2016
  • 期刊类型引用(3)

    1. 岳振宇,范大昭,董杨,纪松,李东子. 一种星载平台轻量化快速影像匹配方法. 地球信息科学学报. 2022(05): 925-939 . 百度学术
    2. 王若兰,潘万彬,曹伟娟. 图像局部区域匹配驱动的导航式拼图方法. 计算机辅助设计与图形学学报. 2020(03): 452-461 . 百度学术
    3. 胡敬双,聂洪玉. 灰度序模式的局部特征描述算法. 中国图象图形学报. 2017(06): 824-832 . 百度学术

    其他类型引用(9)

  • 加载中
  • 图(7) / 表(20)
    计量
    • 文章访问数:  4164
    • HTML全文浏览量:  485
    • PDF下载量:  627
    • 被引次数: 12
    出版历程
    • 收稿日期:  2016-06-18
    • 录用日期:  2016-11-03
    • 刊出日期:  2018-01-20

    目录

    /

    返回文章
    返回