2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双多线激光雷达的非结构化环境负障碍感知技术

蔡云飞 石庭敏 唐振民

蔡云飞, 石庭敏, 唐振民. 基于双多线激光雷达的非结构化环境负障碍感知技术. 自动化学报, 2018, 44(3): 569-576. doi: 10.16383/j.aas.2018.c160453
引用本文: 蔡云飞, 石庭敏, 唐振民. 基于双多线激光雷达的非结构化环境负障碍感知技术. 自动化学报, 2018, 44(3): 569-576. doi: 10.16383/j.aas.2018.c160453
CAI Yun-Fei, SHI Ting-Min, TANG Zhen-Min. Negative Obstacle Perception in Unstructured Environment With Double Multi-beam LiDAR. ACTA AUTOMATICA SINICA, 2018, 44(3): 569-576. doi: 10.16383/j.aas.2018.c160453
Citation: CAI Yun-Fei, SHI Ting-Min, TANG Zhen-Min. Negative Obstacle Perception in Unstructured Environment With Double Multi-beam LiDAR. ACTA AUTOMATICA SINICA, 2018, 44(3): 569-576. doi: 10.16383/j.aas.2018.c160453

基于双多线激光雷达的非结构化环境负障碍感知技术

doi: 10.16383/j.aas.2018.c160453
基金项目: 

国家自然科学基金 61305134

核高基国家重大专项 2015ZX01041101

高等教育博士点基金 20133219120035

详细信息
    作者简介:

    石庭敏  2017年获得南京理工大学计算机科学与工程学院硕士学位.主要研究方向为机器人环境感知.E-mail:stm_njust@163.com

    唐振民  南京理工大学计算机科学与工程学院教授.主要研究方向为多机器人系统架构, 多机器人控制理论和概率机器人学.E-mail:tzm.cs@njust.edu.cn

    通讯作者:

    蔡云飞  南京理工大学计算机科学与工程学院副教授.2011年获得南京理工大学模式识别与智能系统博士学位.主要研究方向为机器人环境感知, 概率机器人学, SLAM.本文通信作者.E-mail:cyf@njust.edu.cn

Negative Obstacle Perception in Unstructured Environment With Double Multi-beam LiDAR

Funds: 

National Natural Science Foundation of China 61305134

National Major Research Program of China 2015ZX01041101

Specialized Research Fund for the Doctoral Program of Higher Education 20133219120035

More Information
    Author Bio:

     Received his master degree from the School of Computer Science and Engineering, Nanjing University of Science and Technology in 2017. His main research interest is robot environment perception

     Professor at the School of Computer Science and Engineering, Nanjing University of Science and Technology. His research interest covers multi-robots architecture, multi-robots control theory, and probabilistic robotics

    Corresponding author: CAI Yun-Fei  Associate professor at the School of Computer Science and Engineering, Nanjing University of Science and Technology. He received his Ph. D. degree from Nanjing University of Science and Technology in 2011. His research interest covers robot environment perception, probabilistic robotics, and SLAM. Corresponding author of this paper
  • 摘要: 负障碍感知是非结构化环境下的难点问题,本文针对该问题提出一种新的基于双多线激光雷达(Light detection and ranging,LiDAR)的感知方法.采用分布嵌入式架构对双激光雷达数据进行同步采集与实时处理,将雷达点云映射到多尺度栅格,统计栅格的点云密度与相对高度等特征并标记,从点云数据提取负障碍几何特征,通过将栅格的统计特征与负障碍的几何特征做多特征关联找到关键特征点对,将特征点对聚类并过滤,识别出负障碍.方法不受地面平整度影响,已成功应用在无人驾驶车上.使用表明该方法具有较高的实时性和可靠性,在非结构化环境下具有良好的感知效果.
    1)  本文责任编委 李平
  • 图  1  三种典型道路类型

    Fig.  1  Three types of typical roads

    图  2  障碍检测示意图

    Fig.  2  Illustration of obstacles detection

    图  3  激光雷达点云分布

    Fig.  3  LiDAR point cloud distribution

    图  4  激光雷达安装方式

    Fig.  4  LiDAR installation method

    图  5  坐标系转换示意图

    Fig.  5  Coordinate system conversion diagram

    图  6  负障碍感知流程图

    Fig.  6  Negative obstacles perception flow chart

    图  7  栅格化

    Fig.  7  Grid map conversion

    图  8  特征点对提取示意图

    Fig.  8  Illustration of feature pair points extraction

    图  9  聚类示意图

    Fig.  9  LiDAR points clustering diagram

    图  10  实验平台

    Fig.  10  Experiment platform

    图  11  分布式架构原理图

    Fig.  11  Schematic diagram of distributed architecture

    图  12  实验1场景

    Fig.  12  Scene of Experiment 1

    图  13  实验1四个不同位置的检测结果

    Fig.  13  Experiment 1 detection results of four different places

    图  14  实验2起伏路面负障碍检测

    Fig.  14  Experiment 2 undulating pavement negative obstacle detection

    图  15  实验3不同距离对窨井口检测结果

    Fig.  15  Experiment 3 sewer exit detection in different distance

    表  1  相邻扫描点间隔

    Table  1  Adjacent scanning point interval

    5 m 10 m 15 m 20 m 25 m
    垂直($^\circ$) 0.33 1.20 2.05 4.30 7.16
    水平($^\circ$) 0.045 0.15 0.31 0.55 0.85
    下载: 导出CSV

    表  2  实验平台雷达安装参数

    Table  2  Experimental platform radar installation parameters

    雷达高度(m) 有效扫描角($^\circ$)
    行健一号 2.0 45
    高尔夫车 2.1 55
    下载: 导出CSV

    表  3  实验场景参数与检测结果

    Table  3  Parameters of experiments and detection results

    环境类型 检测平台 尺寸 深度 初次标记距离 稳定标记距离
    场景1 非结构化 行健一号 3.5 m $\times$ 3 m 0.3 m 20 m 17 m
    场景2 非结构化 行健一号 1.5 m $\times$ 4 m 0.5 m 16 m 15 m
    场景3 非结构化 行健一号 2.3 m $\times$ 1.7 0.6 m 22 m 21 m
    场景4上坡 非结构化 行健一号 0.5 m $\times$ 1 m 0.5 m 15 m 13 m
    场景4下坡 非结构化 行健一号 0.5 m $\times$ 1 m 0.5 m 16 m 16 m
    场景5上坡 非结构化 行健一号 1 m $\times$ 1 m 0.5 m 15 m 13 m
    场景5下坡 非结构化 行健一号 1 m $\times$ 1 m 0.5 m 17 m 15 m
    场景6 半结构化 高尔夫车 直径1 m 1 m 14 m 13 m
    下载: 导出CSV

    表  4  算法时间对比

    Table  4  Algorithm time contrast

    传感器 平台 计算时间(ms)
    本文 3D激光雷达 Cortex-A81GHz CPU, 256MB RAM 15
    文献[8] 3D激光雷达 / 500
    文献[9] 3D激光雷达 3GHzCPU, 2GB RAM 800
    文献[10] 3D激光雷达 Intel-I7 CPU, 4GB RAM 15
    文献[11] 立体视觉 Intel core i7-2620M CPU, 4 GB RRAM > 100
    文献[14] 3D激光雷达 Intel core i7-2620M CPU, 4 GB RRAM < 10
    下载: 导出CSV
  • [1] 方辉, 杨明, 杨汝清.基于地面特征点匹配的无人驾驶车全局定位.机器人, 2010, 32(1):55-60 http://www.doc88.com/p-69211991890.html

    Fang Hui, Yang Ming, Yang Ru-Qing. Ground feature point matching based global localization for driverless vehicles. Robot, 2010, 32(1):55-60 http://www.doc88.com/p-69211991890.html
    [2] Bucher T, Curio C, Edelbrunner J, Igel C, Kastrup D, Leefken I, Lorenz G, Steinhage A, von Seelen W. Image processing and behavior planning for intelligent vehicles. IEEE Transactions on Industrial Electronics, 2003, 50(1):62-75 doi: 10.1109/TIE.2002.807650
    [3] Betke M, Haritaoglu E, Davis L S. Real-time multiple vehicle detection and tracking from a moving vehicle. Machine Vision and Applications, 2000, 12(2):69-83 doi: 10.1007/s001380050126
    [4] Matthies L, Rankin A. Negative obstacle detection by thermal signature. In:Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV, USA:IEEE, 2003, 1:906-913
    [5] Dubbelman G, van der Mark W, van den Heuvel J C, Groen F C A. Obstacle detection during day and night conditions using stereo vision. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA:IEEE, 2007. 109-116
    [6] Hadsell R, Sermanet P, Ben J, Erkan A, Scoffier M, Kavukcuoglu K, Muller U, LeCun Y. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics, 2009, 26(2):120-144 doi: 10.1002/rob.v26:2
    [7] Cong Y, Peng J J, Sun J, Zhu L L, Tang Y D. V-disparity based UGV obstacle detection in rough outdoor terrain. Acta Automatica Sinica, 2010, 36(5):667-673 https://www.sciencedirect.com/science/article/pii/S187410290960029X
    [8] Larson J, Trivedi M, Bruch M. Off-Road Terrain Traversability Analysis and Hazard Avoidance for UGVs. Department of Electrical Engineering, University of California, San Diego, USA, 2011.
    [9] Heckman N, Lalonde J F, Vandapel N, Hebert M. Potential negative obstacle detection by occlusion labeling. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA:IEEE, 2007. 2168-2173
    [10] Sinha A, Papadakis P. Mind the gap:detection and traversability analysis of terrain gaps using LIDAR for safe robot navigation. Robotica, 2013, 31(7):1085-1101 doi: 10.1017/S0263574713000349
    [11] Tingbo H. Research on Stereo Vision Algorithms and Their Application in Obstacle Detection for ALV[Ph.D. dissertation], National University of Defense Technology, China, 2012.
    [12] Marder-Eppstein E, Berger E, Foote T, Gerkey B, Konolige K. The office marathon:robust navigation in an indoor office environment. In:Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA). Anchorage, AK, USA:IEEE, 2010. 300-307
    [13] Larson J, Trivedi M. Lidar based off-road negative obstacle detection and analysis. In:Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington DC, USA:IEEE, 2011. 192-197
    [14] Shang E K, An X J, Wu T, Hu T B, Yuan Q P, He H G. LiDAR based negative obstacle detection for field autonomous land vehicles. Journal of Field Robotics, 2016, 33(5):591-617 doi: 10.1002/rob.2016.33.issue-5
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  2587
  • HTML全文浏览量:  707
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 录用日期:  2017-04-07
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回