2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加密传输在工控系统安全中的可行性研究

梁耀 冯冬芹 徐珊珊 陈思媛 高梦州

梁耀, 冯冬芹, 徐珊珊, 陈思媛, 高梦州. 加密传输在工控系统安全中的可行性研究. 自动化学报, 2018, 44(3): 434-442. doi: 10.16383/j.aas.2018.c160399
引用本文: 梁耀, 冯冬芹, 徐珊珊, 陈思媛, 高梦州. 加密传输在工控系统安全中的可行性研究. 自动化学报, 2018, 44(3): 434-442. doi: 10.16383/j.aas.2018.c160399
LIANG Yao, FENG Dong-Qin, XU Shan-Shan, CHEN Si-Yuan, GAO Meng-Zhou. Feasibility Analysis of Encrypted Transmission on Security of Industrial Control Systems. ACTA AUTOMATICA SINICA, 2018, 44(3): 434-442. doi: 10.16383/j.aas.2018.c160399
Citation: LIANG Yao, FENG Dong-Qin, XU Shan-Shan, CHEN Si-Yuan, GAO Meng-Zhou. Feasibility Analysis of Encrypted Transmission on Security of Industrial Control Systems. ACTA AUTOMATICA SINICA, 2018, 44(3): 434-442. doi: 10.16383/j.aas.2018.c160399

加密传输在工控系统安全中的可行性研究

doi: 10.16383/j.aas.2018.c160399
基金项目: 

国家自然科学基金 61223004

详细信息
    作者简介:

    梁耀  浙江大学控制科学与工程学院硕士研究生.2014年获得山东大学控制科学与工程学院学士学位.主要研究方向为工控系统安全脆弱性分析与建模.E-mail:liangyaoxp@zju.edu.cn

    徐珊珊  浙江大学控制科学与工程学院硕士研究生.2013年获得华东理工大学学士学位.主要研究方向为工业控制轻量级数据加密传输.E-mail:lqxssxss@163.com

    陈思媛  多伦多大学计算机与电子工程学院硕士研究生.2015年获得浙江大学学士学位.主要研究方向为工控系统加密传输机制性能分析与补偿.E-mail:siyuansiyuan.chen@mail.utoronto.ca

    高梦州  浙江大学控制科学与工程学院博士研究生.2012年获得哈尔滨工业大学学士学位.主要研究方向为工业控制系统网络安全.E-mail:mzgao@zju.edu.cn

    通讯作者:

    冯冬芹  浙江大学工业控制技术国家重点实验室、浙江大学智能系统与控制研究所教授.主要研究方向为现场总线, 实时以太网, 工业无线通信技术, 工业控制系统安全, 网络控制系统的研发与标准化工作.本文通信作者.E-mail:fengdongqin@zju.edu.cn

Feasibility Analysis of Encrypted Transmission on Security of Industrial Control Systems

Funds: 

National Natural Science Foundation of China 61223004

More Information
    Author Bio:

     Master student at the College of Control Science and Engineering, Zhejiang University. He received his bachelor degree from Shandong University in 2014. His research interest covers vulnerability analysis and modeling of ICS security

     Master student at the College of Control Science and Engineering, Zhejiang University. She received her bachelor degree from East China University of Science and Technology. Her main research interest is lightweight encrypted data transmission for ICS

     Master student in the Department of Electrical and Computer Engineering, University of Toronto. She received her bachelor degree from Zhejiang University in 2015. Her research interest covers performance assessment and compensation for ICS based on cryptography

     Ph. D. candidate at the Colledge of Control Science and Engineering, Zhejiang University. She received her bachelor degree from Harbin Institute of Technology in 2012. Her main research interest is network security of ICS

    Corresponding author: FENG Dong-Qin  Professor at the State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University. His research interest covers field bus, real-time ethernet, industrial wireless communication technology, security of industrial control system, and network control system. Corresponding author of this paper
  • 摘要: 针对需要对现场数据加密的工业控制系统(Industrial control system,ICS),基于稳定性判据设计一种加密传输机制的可行性评估模型,结合超越方程D-subdivision求解法,提出一种数据加密长度可行域求解算法.改进IAE(Integral absolute error)并提出Truncated IAE(TIAE)-based指标,用于评估可行域内不同数据长度对系统实时性能的影响.利用嵌入式平台测定的加密算法执行时间与数据长度的关系,评估了两种对称加密算法应用在他励直流电机控制系统中的可行性,验证了可行域求解算法的准确性,并获得了实时性能随数据长度的变化规律.
    1)  本文责任编委 陈积明
  • 图  1  基于加密传输机制的工控系统框架图

    Fig.  1  Frame diagram of industrial control system under encrypted transmission

    图  2  基于加密传输机制的MIMO控制系统结构图

    Fig.  2  Structure diagram of MIMO control system under encrypted transmission

    图  3  加密算法执行时间与数据加密长度关系曲线

    Fig.  3  Relationship curve between the execute time of encryption algorithms and the length of encrypted data

    图  4  不同AES加密数据长度下实际转速变化曲线

    Fig.  4  Timely varying curves of the actual speed under different length of AES encrypted data

    图  5  ${\eta _{{\rm TIAE}}}$随${t_r}$、$\sigma\% $、${t_s}$、${\rm TIAE}$变化曲线

    Fig.  5  Curves of the index ${\eta _{{{\rm TIAE}}}}$ under different ${t_r}$, $\sigma\%$, ${t_s}$, ${\rm TIAE}$

    图  6  ${t_r}$、$\sigma\%$、${t_s}$、${\rm TIAE}$随数据加密长度$l$变化曲线

    Fig.  6  Curves of the index ${t_r}$, $\sigma\%$, ${t_s}$, ${\rm TIAE}$ under different length of AES encrypted data

    图  7  ${\eta _{{\rm TIAE}}}$随数据加密长度$l$变化曲线

    Fig.  7  Curves of the index ${\eta _{{\rm TIAE}}}$ under different length of AES encrypted data.

    表  1  加密算法执行时间与数据加密长度测试数据

    Table  1  Test data between the execute time of encryption algorithms and the length of plaintext

    长度(B) 16 144 272 400 528 656 784 912 1040
    时间(ms) AES加密 7.48 67.21 127.18 187.24 246.88 306.46 366.37 426.42 485.94
    AES解密 9.32 83.99 158.81 233.46 308.88 383.58 458.43 533.18 608.33
    DES加密 8.83 79.72 150.59 228.22 300.12 372.94 445.34 517.98 595.94
    DES解密 6.97 62.46 117.91 178.22 234.84 291.86 348.74 405.94 462.94
    下载: 导出CSV

    表  2  集合$\Theta$判定表格

    Table  2  Judging form of $\Theta$

    $\tau$ $\omega $ $T$ ${\rm{RT}}$ ${\rm{NU(}}\tau {\rm{)}}$
    (0, 0.321) 0
    0.321 4.775 0.201867 1
    (0.321, 1.637) 2
    1.637 4.775 0.201867 1
    (1.637, 2.953) 4
    2.953 4.775 0.201867 1
    $\cdots$ $\cdots$ $\cdots$ $\cdots$ 6
    下载: 导出CSV

    表  3  实时性指标与数据加密长度测试数据

    Table  3  Test data between the real-time performance index and the length of encrypted data

    $l$(B) ${t_r}$(s) $\sigma\%$ ${t_s}$ (s) TIAE ${\eta _{{{\rm TIAE}}}}$
    0 20 0 1.618 99.2545 1
    70 1.301 0.2438 1.972 130.2633 0.7620
    80 1.305 0.3453 2.118 161.8826 0.6131
    90 1.312 0.4396 2.596 206.0987 0.4816
    100 1.323 0.544 3.209 274.6412 0.3614
    110 1.333 0.639 4.311 372.4369 0.2665
    120 1.344 0.7434 5.676 541.5546 0.1833
    130 1.354 0.8383 8.749 846.1615 0.1173
    140 1.365 0.9427 17.231 1.73E+03 0.0573
    150 1.375 1.0376 80.985 8.52E+03 0.0117
    下载: 导出CSV
  • [1] Knowles W, Prince D, Hutchison D, Disso J F P, Jones K. A survey of cyber security management in industrial control systems. International Journal of Critical Infrastructure Protection, 2015, 9:52-80 doi: 10.1016/j.ijcip.2015.02.002
    [2] ICS-CERT. ICS-CERT Monitor[Online], available: https://ics-cert.us-cert.gov/monitors/ICS-MM201512, May 3, 2016.
    [3] Pang Z H, Liu G P, Zhou D H, Hou F Y, Sun D H. Two-channel false data injection attacks against output tracking control of networked systems. IEEE Transactions on Industrial Electronics, 2016, 63(5):3242-3251 doi: 10.1109/TIE.2016.2535119
    [4] Tang B X, Alvergue L D, Gu G X. Secure networked control systems against replay attacks without injecting authentication noise. In: Proceedings of the 2015 American Control Conference (ACC). Chicago, USA: IEEE, 2015. 6028-6033
    [5] Zijlstra P. Cryptography for a Networked Control System using Asynchronous Event-Triggered Control[Master dissertation], Delft University of Technology, Netherlands, 2016.
    [6] Zhang L Y, Xie L, Li W Z, Wang Z L. Security solutions for networked control systems based on des algorithm and improved grey prediction model. International Journal of Computer Network and Information Security (IJCNIS), 2013, 6(1):78-85 doi: 10.5815/ijcnis
    [7] Wei M K, Wang W Y. Safety can be dangerous: secure communications impair smart grid stability under emergencies. In: Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM). San Diego, USA: IEEE, 2015. 1-6
    [8] Sipahi R, Niculescu S I, Abdallah C T, Michiels W, Gu K Q. Stability and stabilization of systems with time delay. IEEE Control Systems, 2011, 31(1):38-65 doi: 10.1109/MCS.2010.939135
    [9] Sipahi R, Olgac N. A unique methodology for the stability robustness of multiple time delay systems. Systems & Control Letters, 2006, 55(10):819-825 http://www.sciencedirect.com/science/article/pii/S0167691106000612
    [10] Olgac N, Sipahi R. An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Transactions on Automatic Control, 2002, 47(5):793-797 doi: 10.1109/TAC.2002.1000275
    [11] Harris T J. Assessment of control loop performance. The Canadian Journal of Chemical Engineering, 1989, 67(5):856-861 doi: 10.1002/cjce.v67:5
    [12] Eriksson P G, Isaksson A J. Some aspects of control loop performance monitoring. In: Proceedings of the 3rd IEEE Conference on Control Applications. Scotland, UK: IEEE, 1994. 1029-1034
    [13] Gupta R A, Chow M Y. Performance assessment and compensation for secure networked control systems. In: Proceedings of the 34th Annual Conference of IEEE Industrial Electronics. Orlando, USA: IEEE, 2008. 2929-2934
    [14] Zeng W T, Chow M Y. Optimal tradeoff between performance and security in networked control systems based on coevolutionary algorithms. IEEE Transactions on Industrial Electronics, 2012, 59(7):3016-3025 doi: 10.1109/TIE.2011.2178216
    [15] Yu Z P, Wang J D, Huang B, Bi Z F. Performance assessment of PID control loops subject to setpoint changes. Journal of Process Control, 2011, 21(8):1164-1171 doi: 10.1016/j.jprocont.2011.06.012
    [16] Smith R S. Covert misappropriation of networked control systems:presenting a feedback structure. IEEE Control Systems, 2015, 35(1):82-92 doi: 10.1109/MCS.2014.2364723
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2685
  • HTML全文浏览量:  350
  • PDF下载量:  854
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-16
  • 录用日期:  2016-12-27
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回