2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层模型预测控制系统的多包镇定域分析与系统设计

朱宇轩 李少远

朱宇轩, 李少远. 双层模型预测控制系统的多包镇定域分析与系统设计. 自动化学报, 2018, 44(2): 262-269. doi: 10.16383/j.aas.2018.c160394
引用本文: 朱宇轩, 李少远. 双层模型预测控制系统的多包镇定域分析与系统设计. 自动化学报, 2018, 44(2): 262-269. doi: 10.16383/j.aas.2018.c160394
ZHU Yu-Xuan, LI Shao-Yuan. Analysis and System Design of Multi-convex Hull Stabilization Domain for Double-layered Model Predictive Control System. ACTA AUTOMATICA SINICA, 2018, 44(2): 262-269. doi: 10.16383/j.aas.2018.c160394
Citation: ZHU Yu-Xuan, LI Shao-Yuan. Analysis and System Design of Multi-convex Hull Stabilization Domain for Double-layered Model Predictive Control System. ACTA AUTOMATICA SINICA, 2018, 44(2): 262-269. doi: 10.16383/j.aas.2018.c160394

双层模型预测控制系统的多包镇定域分析与系统设计

doi: 10.16383/j.aas.2018.c160394
基金项目: 

国家自然科学基金 61521063

国家自然科学基金 61590924

详细信息
    作者简介:

    朱宇轩  上海交通大学硕士研究生.主要研究方向为模型预测控制.E-mail:xuan1788@163.com

    通讯作者:

    李少远   上海交通大学自动化系教授.主要研究方向为预测控制, 模糊控制, 自适应控制理论与应用.本文通信作者.E-mail:syli@sjtu.edu.cn

Analysis and System Design of Multi-convex Hull Stabilization Domain for Double-layered Model Predictive Control System

Funds: 

National Natural Science Foundation of China 61521063

National Natural Science Foundation of China 61590924

More Information
    Author Bio:

     Master student at Shanghai Jiao Tong University. Her main research interest is model predictive control

    Corresponding author: LI Shao-Yuan  Professor at the Institute of Automation, Shanghai Jiao Tong University. His research interest covers predictive control, fuzzy system, adaptive control theory and applications. Corresponding author of this paper
  • 摘要: 针对双层模型预测控制(Model predictive control,MPC)中出现的由于系统状态在动态控制(Dynamic control,DC)过程中超出约束集,导致下层优化不可行的问题,本文在综合控制方法的基础上提出一种新的动态控制策略,引入多包镇定域(Multi-convex hull stabilization domain,MHSD)的概念.通过离线计算多包镇定域,并根据系统每一时刻的实测状态值,在线决定(Dynamic control)层的镇定域以及相应的控制时域,结合变约束思想,保证动态控制过程递归可行,从而有效控制在大范围内变化的系统状态.另外,本文通过设计非线性反馈控制器,扩大了终端不变集和多包镇定域的范围,提高了DC层对稳态目标值的跟踪效果.本文的控制算法可以使得DC层在目标跟踪过程中保证递归可行性,并最大程度地实现无静差跟踪.仿真算例验证了本文算法对稳定系统和不稳定系统都有效.
    1)  本文责任编委 谢永芳
  • 图  1  双层模型预测控制结构

    Fig.  1  The structure of the double-layered MPC

    图  2  纸机系统的多包镇定域

    Fig.  2  The stabilization region set of the AS DPS

    图  3  控制时刻$k$从31到60对应的纸机系统控制过程

    Fig.  3  Control process of the paper system with the control moment $k$ from 31 to 60

    图  4  控制时刻$k$从61到90对应的纸机系统控制过程

    Fig.  4  Control process of the paper system with the control moment $k$ from 61 to 90

    图  5  控制时刻$k$从31到60对应的双积分系统控制过程

    Fig.  5  Control process of the double-integrator system with the control moment $k$ from 31 to 60

    图  6  三组仿真中的系统状态轨迹

    Fig.  6  The state trajectories of the three scenarios

    表  1  本文符号及其含义

    Table  1  The meanings of the notations in this paper

    符号含义
    $x^*$ $x$的最优值
    ${\bf R}^n$ $n$维欧氏空间
    $k$离散采样间隔
    $x$系统状态, $x \in {\bf R}^{n_x}$
    $u$系统输入, $u \in {\bf R}^{n_u}$
    $x_s(u_s)$稳态状态(输入)
    $x_t(u_t)$期望稳态状态(输入)
    $\bar{x}(\bar{u})$状态(输入)上界
    $I_n $ $n$维单位矩阵
    $Q_s, R_s$适维权重矩阵
    $N_i$第$i$个镇定域所对应的控制时域
    ${\| x\|}_{Q_s}^2$ $x^{\rm T}$$Q_s$$x$
    $x(k+i|k)$ $k$时刻对未来状态的预测值
    $u(k+i|k) $ $k$时刻对未来输入的预测值
    下载: 导出CSV

    表  2  纸机系统的稳态目标计算结果

    Table  2  The results of the SSTC in the AS DPS system

    $k$$u_{s, 1}$$u_{s, 2}$$x_{s, 1}$$x_{s, 2}$
    $1\sim90$-0.39-0.41-0.32-0.33
    下载: 导出CSV

    表  3  双积分器系统的稳态目标计算结果

    Table  3  The results of SSTC in the double-integrator system

    k$u_t$$x_t$$u_s$$x_s$
    $1\sim30$(0, 0)(2, -2)(0, 0)(2, 0.5)
    $31\sim60$(0, 0)(0, -2)(-0.1, 0.2)(-0.38, 0.2998)
    $61\sim90$(0, 0)(0, 0)(0, 0)(0, 0)
    下载: 导出CSV
  • [1] 席裕庚, 李德伟.预测控制定性综合理论的基本思想和研究现状.自动化学报, 2008, 34 (10):1225-1234 http://www.aas.net.cn/CN/abstract/abstract17992.shtml

    Xi Yu-Geng, Li De-Wei. Fundamental philosophy and status of qualitative synthesis of model predictive control. Acta Automatica Sinica, 2008, 34 (10):1225-1234 http://www.aas.net.cn/CN/abstract/abstract17992.shtml
    [2] 席裕庚, 李德伟, 林姝.模型预测控制-现状与挑战.自动化学报, 2013, 39 (3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml

    Xi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39 (3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml
    [3] 席裕庚.预测控制.第2版.北京:国防工业出版社, 2013. 15-67

    Xi Yu-Geng. Predictive Control (Second Edition). Beijing:National Defense Industry Press, 2013. 15-67
    [4] Sildir H, Arkun Y, Cakal B, Gokce D, Kuzu E. Plant-wide hierarchical optimization and control of an industrial hydrocracking process. Journal of Process Control, 2013, 23 (9):1229-1240 doi: 10.1016/j.jprocont.2013.07.007
    [5] Darby M L, Nikolaou M, Jones J, Nicholson D. RTO:an overview and assessment of current practice. Journal of Process Control, 2011, 21 (6):874-884 doi: 10.1016/j.jprocont.2011.03.009
    [6] Scattolini R. Architectures for distributed and hierarchical model predictive control-a review. Journal of Process Control, 2009, 19 (5):723-731 doi: 10.1016/j.jprocont.2009.02.003
    [7] 李世卿, 丁宝苍.基于动态矩阵控制的双层结构预测控制的整体解决方案.自动化学报, 2015, 41 (11):1857-1866 http://www.aas.net.cn/CN/abstract/abstract18761.shtml

    Li Shi-Qing, Ding Bao-Cang. An overall solution to double-layered model predictive control based on dynamic matrix control. Acta Automatica Sinica, 2015, 41 (11):1857-1866 http://www.aas.net.cn/CN/abstract/abstract18761.shtml
    [8] 李世卿, 丁宝苍, 孙耀.双层预测控制中基于操作变量增量的多优先级稳态目标计算.控制理论与应用, 2015, 32 (2):239-245 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201502014

    Li Shi-Qing, Ding Bao-Cang, Sun Yao. Multi-priority rank steady-state target calculation in double-layered model predictive control by optimizing increments of manipulated variables. Control Theory & Applications, 2015, 32 (2):239-245 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201502014
    [9] Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control:stability and optimality. Automatica, 2000, 36 (6):789-814 doi: 10.1016/S0005-1098(99)00214-9
    [10] Gutman P O, Cwikel M. An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states. IEEE Transactions on Automatic Control, 1987, 32 (3):251-254 doi: 10.1109/TAC.1987.1104567
    [11] Gilbert E G, Tan K T. Linear systems with state and control constraints:the theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, 1991, 36 (9):1008-1020 doi: 10.1109/9.83532
    [12] 潘红光, 高海南, 孙耀, 张英, 丁宝苍.基于多优先级稳态优化的双层结构预测控制算法及软件实现.自动化学报, 2014, 40 (3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml

    Pan Hong-Guang, Gao Hai-Nan, Sun Yao, Zhang Ying, Ding Bao-Cang. The algorithm and software implementation for double-layered model predictive control based on multi-priority rank steady-state optimization. Acta Automatica Sinica, 2014, 40 (3):405-414 http://www.aas.net.cn/CN/abstract/abstract18305.shtml
    [13] Blanchini F. Set invariance in control. Automatica, 1999, 35 (11):1747-1767 doi: 10.1016/S0005-1098(99)00113-2
    [14] Li Z J, Tan W, Nian S C, Liu J Z. A stabilizing model predictive control for linear systems with input saturation. In: Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China: IEEE, 2006. 671-675
    [15] Li Z J, Liu J Z, Tan W. Multi-model H_∞ loop shaping controller for nonlinear system based on gap metric. In: Proceedings of the ICARCV 8th Control, Automation, Robotics and Vision Conference. Kunming, China: IEEE, 2004, 3: 1940-1944
    [16] Kosut R. Design of linear systems with saturating linear control and bounded states. IEEE Transactions on Automatic Control, 1983, 28 (1):121-124 doi: 10.1109/TAC.1983.1103127
    [17] 李志军. 约束模型预测控制的稳定性与鲁棒性研究[博士学位论文], 华北电力大学(北京), 中国, 2005.

    Li Zhi-Jun. Research on Stability and Robustness of Constrained Model Predictive Control[Ph. D. dissertation], North China Electric Power University (Beijing), China, 2005.
    [18] Limon D, Alvarado I, Alamo T, Camacho E F. MPC for tracking piecewise constant references for constrained linear systems. Automatica, 2008, 44 (9):2382-2387 doi: 10.1016/j.automatica.2008.01.023
    [19] Chen H, Allgöwer F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 1998, 34 (10):1205-1217 doi: 10.1016/S0005-1098(98)00073-9
    [20] 曹永岩, 毛维杰, 孙优贤, 冯旭.现代控制理论的工程应用.杭州:浙江大学出版社, 2000.

    Cao Yong-Yan, Mao Wei-Jie, Sun You-Xian, Feng Xu. Engineering Application of Modern Control Theory. Hangzhou:Zhejiang University Press, 2000.
    [21] Pluymers B, Rossiter J A, Suykens J A K, Moor B D. The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005, 2: 804-809
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1984
  • HTML全文浏览量:  236
  • PDF下载量:  866
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 录用日期:  2016-12-20
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回