Traffic Congestion Status Identification Method for Road Network with Multi-source Uncertain Information
-
摘要: 拥堵状态辨识是道路运行状态评估的重要内容,是交通系统流量调控和管理的重要参考指标.在智能交通系统(Intelligent transport system,ITS)普及化程度越来越高的后交通时代,如何实现海量数据下对多源不确定交通拥堵状态的辨识是非常重要的内容.首先,基于多元集对分析建立一种新的路网交通拥堵状态刻画模型;然后,通过改进证据理论中Dempster组合规则实现交通信息融合,并推导出当前交通拥堵状态的准确表达值;最后,在数值模拟的基础上,使用重庆市南岸区的交通检测数据进行仿真分析,结果表明本方法能准确直观地反映出实时交通拥堵状态,具有潜在的实际应用价值.Abstract: Congestion identification is an important content of traffic condition assessment, and has significant meaning to the traffic regulation and management of transportation systems. With intelligent transport system (ITS) becoming increasingly popular, how to achieve congestion identification for uncertain multi-source information is a very important content under massive data. First, a new road network traffic congestion state characterization model is built based on multivariate set pair analysis method. Then, traffic information fusion is achieved by improving the Dempster combination rule of evidence method, and the accurate expression values of current traffic congestion are derived. Finally, the real time traffic monitoring data in Chongqing is used to verify the presented method. The results illustrate the presented method is effective, and that it is not only of theoretical significance but also of potential application value.1) 本文责任编委 侯忠生
-
表 1 $m_1$ 与 $m_2$ 的融合过程
Table 1 Fusion process of $m_1$ and $m_2$
$\theta_1(0.2)$ $\theta_2(0.4)$ $\theta_3(0.2)$ $\theta_4(0.1)$ $\theta_5(0.1)$ $\theta_1(0.1)$ 0.02 0.04 0.02 0.01 0.01 $\theta_2(0.4)$ 0.08 0.16 0.08 0.04 0.04 $\theta_3(0.3)$ 0.06 0.12 0.06 0.03 0.03 $\theta_4(0.1)$ 0.02 0.04 0.02 0.01 0.01 $\theta_5(0.1)$ 0.02 0.04 0.02 0.01 0.01 表 2 $m_{1, 2}$ 与 $m_3$ 的融合过程
Table 2 Fusion process of $m_{1, 2}$ and $m_3$
$\theta_1(0.08)$ $\theta_2(0.61)$ $\theta_3(0.23)$ $\theta_4(0.04)$ $\theta_5(0.04)$ $\theta_1(0.1)$ 0.008 0.061 0.023 0.004 0.004 $\theta_2(0.5)$ 0.040 0.305 0.115 0.020 0.020 $\theta_3(0.2)$ 0.016 0.112 0.046 0.008 0.008 $\theta_4(0.1)$ 0.008 0.061 0.023 0.004 0.004 $\theta_5(0.1)$ 0.008 0.061 0.023 0.004 0.004 -
[1] 黄大荣, 宋军, 李淑庆.网络化动态调控下城市路网交通拥堵控制技术综述.交通运输工程学报, 2013, 13(5):105-114 http://d.wanfangdata.com.cn/Periodical_jtysgcxb201305015.aspxHuang Da-Rong, Song Jun, Li Shu-Qing. Control technology review of traffic congestion in urban road network under networked dynamic scheduling and control. Journal of Traffic and Transportation Engineering, 2013, 13(5):105-114 http://d.wanfangdata.com.cn/Periodical_jtysgcxb201305015.aspx [2] Chen B Y, Lam W H K, Sumalee A, Li Q Q, Li Z C. Vulnerability analysis for large-scale and congested road networks with demand uncertainty. Transportation Research Part A:Policy and Practice, 2012, 46(3):501-516 doi: 10.1016/j.tra.2011.11.018 [3] 王坤峰, 李镇江, 汤淑明.基于多特征融合的视频交通数据采集方法.自动化学报, 2011, 37(3):322-330 http://www.aas.net.cn/CN/abstract/abstract17438.shtmlWang Kun-Feng, Li Zhen-Jiang, Tang Shu-Ming. Visual traffic data collection approach based on multi-features fusion. Acta Automatica Sinica, 2011, 37(3):322-330 http://www.aas.net.cn/CN/abstract/abstract17438.shtml [4] Sun C Y, Xing J P, Lu X Y, Yang H, Wu Y, Sun J. An optimization algorithm for traffic state evaluation from real-time floating car data. Journal of Information and Computational Science, 2014, 11(4):1087-1092 doi: 10.12733/issn.1548-7741 [5] Elhenawy M, Rakha H A. Automatic congestion identification with two-component mixture models. Transportation Research Record:Journal of the Transportation Research Board, 2015, 2489:11-19 doi: 10.3141/2489-02 [6] Gong Y K, Deng F M, Sinnott R O. Identification of (near) real-time traffic congestion in the cities of Australia through twitter. In: Proceedings of the 1st ACM International Workshop on Understanding the City with Urban Informatics. Melbourne, Australia: ACM, 2015. 7-12 [7] Hu J M, Mei Q, Qi W P, Zhang J J, Zhang Y. Traffic congestion identification based on image processing. IET Intelligent Transport Systems, 2012, 6(2):153-160 doi: 10.1049/iet-its.2011.0124 [8] Lu H P, Sun Z Y, Qu W C. Big data-driven based real-time traffic flow state identification and prediction. Discrete Dynamics in Nature and Society, 2015, 2015:Article No. 284906 http://core.ac.uk/display/29449163 [9] 赵玲, 黄大荣, 宋军.路网交通亚健康状态下交通流的分形特性.控制工程, 2012, 19(4):583-586 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jczdh201204009Zhao Ling, Huang Da-Rong, Song Jun. Fractal characteristics of mountain cities' traffic flow with Sub-health state. Control Engineering of China, 2012, 19(4):583-586 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jczdh201204009 [10] 王卓, 刁朋娣, 董宏辉, 张新媛, 金茂菁.城市道路网络可靠度及其敏感度研究.中国公路学报, 2013, 26(2):134-139 http://d.wanfangdata.com.cn/Periodical_zgglxb201302019.aspxWang Zhuo, Diao Peng-Di, Dong Hong-Hui, Zhang Xin-Yuan, Jin Mao-Jing. Research on reliability and sensitivity of urban road network. China Journal of Highway and Transport, 2013, 26(2):134-139 http://d.wanfangdata.com.cn/Periodical_zgglxb201302019.aspx [11] Widyantoro D H, Enjat Munajat M D. Fuzzy traffic congestion model based on speed and density of vehicle. In: Proceedings of the 2014 International Conference of Advanced Informatics: Concept, Theory and Application. Bandung, Indonesia: IEEE, 2014. 321-325 [12] 张婧, 任刚.城市道路交通拥堵状态时空相关性分析.交通运输系统工程与信息, 2015, 15(2):175-181 http://www.tseit.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18976Zhang Jing, Ren Gang. Spatio-temporal correlation analysis of urban traffic congestion diffusion. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2):175-181 http://www.tseit.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18976 [13] 何兆成, 周亚强, 余志.基于数据可视化的区域交通状态特征评价方法.交通运输工程学报, 2016, 16(1):133-140 http://www.cqvip.com/QK/90752X/201601/668198168.htmlHe Zhao-Cheng, Zhou Ya-Qiang, Yu Zhi. Regional traffic state evaluation method based on data visualization. Journal of Traffic and Transportation Engineering, 2016, 16(1):133-140 http://www.cqvip.com/QK/90752X/201601/668198168.html [14] Habtie A B, Abraham A, Midekso D. Cellular network based real-time urban road traffic state estimation framework using neural network model estimation. In: Proceedings of the 2015 IEEE Computational Intelligence. Cape Town, South Africa: IEEE, 2015. 38-44 [15] 乔少杰, 李天瑞, 韩楠, 高云军, 元昌安, 王晓腾, 唐常杰.大数据环境下移动对象自适应轨迹预测模型.软件学报, 2015, 26(11):2869-2883 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rjxb201511011Qiao Shao-Jie, Li Tian-Rui, Han Nan, Gao Yun-Jun, Yuan Chang-An, Wang Xiao-Teng, Tang Chang-Jie. Self-adaptive trajectory prediction model for moving objects in big data environment. Journal of Software, 2015, 26(11):2869-2883 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rjxb201511011 [16] 赵克勤.集对分析及其初步应用.大自然探索, 1994, 13(1):67-72 http://www.wenkuxiazai.com/doc/225c997add88d0d232d46aa3.htmlZhao Ke-Qin. Set pair analysis and its prelimiary application. Exploration of Nature, 1994, 13(1):67-72 http://www.wenkuxiazai.com/doc/225c997add88d0d232d46aa3.html [17] Liu C F, Zhang L, Yang A M, Zhao S J, Li D. The evaluation model of international science and technology cooperation based on set pair analysis. Journal of Interdisciplinary Mathematics, 2014, 17(1):95-108 doi: 10.1080/09720502.2014.881151 [18] 段在鹏, 钱新明, 刘振翼, 黄平, 夏登友, 多英全.基于指标重要度及代价的系统评价后续决策.系统工程与电子技术, 2015, 37(7):1587-1595 doi: 10.3969/j.issn.1001-506X.2015.07.19Duan Zai-Peng, Qian Xin-Ming, Liu Zhen-Yi, Huang Ping, Xia Deng-You, Duo Ying-Quan. Follow-up decision for system evaluation based on index importance and costs. Systems Engineering and Electronics, 2015, 37(7):1587-1595 doi: 10.3969/j.issn.1001-506X.2015.07.19 [19] Yang Y F, Yang A M, Zhang H C. Application of set pair analysis in the material clustering. Applied Mechanics and Materials, 2014, 443:707-710 https://www.scientific.net/amm.443.707.pdf [20] Ruan G C. Customs risk identification and application based on set pair analysis. In: Proceedings of the 2012 International Conference on Cybernetics and Informatics. New York, USA: Springer, 2013, 163: 1229-1237 [21] Wang H F, Lin D Y, Qiu J, Ao L L, Du Z D, He B T. Research on multiobjective group decision-making in condition-based maintenance for transmission and transformation equipment based on D-S evidence theory. IEEE Transactions on Smart Grid, 2015, 6(2):1035-1045 doi: 10.1109/TSG.2015.2388778 [22] 徐晓滨, 张镇, 李世宝, 文成林.基于诊断证据静态融合与动态更新的故障诊断方法.自动化学报, 2016, 42(1):107-121 http://www.aas.net.cn/CN/abstract/abstract18800.shtmlXu Xiao-Bin, Zhang Zhen, Li Shi-Bao, Wen Cheng-Lin. Fault diagnosis based on fusion and updating of diagnosis evidence. Acta Automatica Sinica, 2016, 42(1):107-121 http://www.aas.net.cn/CN/abstract/abstract18800.shtml [23] 丛林虎, 徐廷学, 荀凯.基于D-S证据理论的导弹制导控制系统的联合最小二乘支持向量机预测模型.兵工学报, 2015, 36(8):1466-1472 http://d.old.wanfangdata.com.cn/Periodical/bgxb201508013Cong Lin-Hu, Xu Ting-Xue, Gou Kai. ULS-SVM prediction model of missile guidance and control systems based on D-S evidence theory. Acta Armamentarii, 2015, 36(8):1466-1472 http://d.old.wanfangdata.com.cn/Periodical/bgxb201508013 [24] 李瑞敏, 马玮.基于BP神经网络与D-S证据理论的路段平均速度融合方法.交通运输工程学报, 2014, 14(5):111-118 http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405017.htmLi Rui-Min, Ma Wei. Fusion method of road section average speed based on BP neural network and D-S evidence theory. Journal of Traffic and Transportation Engineering, 2014, 14(5):111-118 http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405017.htm [25] 宋亚飞, 王晓丹, 雷蕾.基于直觉模糊集的时域证据组合方法研究.自动化学报, 2016, 42(9):1322-1338 http://www.aas.net.cn/CN/abstract/abstract18921.shtmlSong Ya-Fei, Wang Xiao-Dan, Lei Lei. Combination of temporal evidence sources based on intuitionistic fuzzy sets. Acta Automatica Sinica, 2016, 42(9):1322-1338 http://www.aas.net.cn/CN/abstract/abstract18921.shtml