2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多源不确定信息的路网交通拥堵状态辨识方法

黄大荣 柴彦冲 赵玲 孙国玺

黄大荣, 柴彦冲, 赵玲, 孙国玺. 考虑多源不确定信息的路网交通拥堵状态辨识方法. 自动化学报, 2018, 44(3): 533-544. doi: 10.16383/j.aas.2018.c160373
引用本文: 黄大荣, 柴彦冲, 赵玲, 孙国玺. 考虑多源不确定信息的路网交通拥堵状态辨识方法. 自动化学报, 2018, 44(3): 533-544. doi: 10.16383/j.aas.2018.c160373
HUANG Da-Rong, CHAI Yan-Chong, ZHAO Ling, SUN Guo-Xi. Traffic Congestion Status Identification Method for Road Network with Multi-source Uncertain Information. ACTA AUTOMATICA SINICA, 2018, 44(3): 533-544. doi: 10.16383/j.aas.2018.c160373
Citation: HUANG Da-Rong, CHAI Yan-Chong, ZHAO Ling, SUN Guo-Xi. Traffic Congestion Status Identification Method for Road Network with Multi-source Uncertain Information. ACTA AUTOMATICA SINICA, 2018, 44(3): 533-544. doi: 10.16383/j.aas.2018.c160373

考虑多源不确定信息的路网交通拥堵状态辨识方法

doi: 10.16383/j.aas.2018.c160373
基金项目: 

国家自然科学基金 61663008

广东省石化装备故障诊断重点实验室开放式基金 GDUPTKLAB201501

重庆市高等教育学会高等学校2015-2016年教改项目 CQGJ15010C

重庆市研究生教改重点项目 yjg152011

国家自然科学基金 61304104

国家自然科学基金 61573076

教育部留学归国人员科研启动基金 2015-49

重庆市高等学校优秀人才支持计划 2014-18

详细信息
    作者简介:

    黄大荣 重庆交通大学信息科学与工程学院教授.主要研究方向为故障诊断与容错控制, 交通信息与控制.E-mail:hcx1978@163.com

    赵玲 重庆交通大学信息科学与工程学院副教授.主要研究方向为信号处理.E-mail:zhaoling@cqjtu.edu.cn

    孙国玺 广东石油化工学院教授.2006年获得华南理工大学电路和系统专业博士学位.主要研究方向为故障诊断, 剩余寿命预测, 数据挖掘.E-mail:sguoxi@126.com

    通讯作者:

    柴彦冲 重庆交通大学信息科学与工程学院硕士研究生.主要研究方向为交通信息化, 大数据处理.本文通信作者.E-mail:chaiyanchong@163.com

Traffic Congestion Status Identification Method for Road Network with Multi-source Uncertain Information

Funds: 

National Natural Science Foundation of China 61663008

Opening Fund of Provincial Key Laboratory of Petrochemical Equipment Fault Diagnosis GDUPTKLAB201501

Chongqing Association of Higher Education 2015-2016 Research Project CQGJ15010C

Research Project for Graduate Education of Chongqing yjg152011

National Natural Science Foundation of China 61304104

National Natural Science Foundation of China 61573076

the Science Research Foundation for Returned Scholars, Ministry of Education of China 2015-49

Program for Excellent Talents of Chongqing Higher School 2014-18

More Information
    Author Bio:

    Professor at the College of Information Science and Engineering, Chongqing Jiaotong University. His research interest covers failure detection and fault-tolerent control, transportation information and control

    Associate professor at the College of Information Science and Engineering, Chongqing Jiaotong University. Her main research interest is signal processing

    Professor at Guangdong University of Petrochemical Technology. He received his Ph. D. degree from South China University of Technology in 2006. His research interest covers failure detection, residual service life prediction, and data mining

    Corresponding author: CHAI Yan-Chong Master student at the College of Information Science and Engineering, Chongqing Jiaotong University. His research interest covers transportation informatization and large dataset processing. Corresponding author of this paper
  • 摘要: 拥堵状态辨识是道路运行状态评估的重要内容,是交通系统流量调控和管理的重要参考指标.在智能交通系统(Intelligent transport system,ITS)普及化程度越来越高的后交通时代,如何实现海量数据下对多源不确定交通拥堵状态的辨识是非常重要的内容.首先,基于多元集对分析建立一种新的路网交通拥堵状态刻画模型;然后,通过改进证据理论中Dempster组合规则实现交通信息融合,并推导出当前交通拥堵状态的准确表达值;最后,在数值模拟的基础上,使用重庆市南岸区的交通检测数据进行仿真分析,结果表明本方法能准确直观地反映出实时交通拥堵状态,具有潜在的实际应用价值.
    1)  本文责任编委 侯忠生
  • 图  1  南岸区路网

    Fig.  1  Road network of Nanan district

    图  2  观测示意图

    Fig.  2  The observation sketch

    图  3  拥堵状态曲线

    Fig.  3  The curve of congestion state

    图  4  软件初始界面

    Fig.  4  The initial software interface

    图  5  轻度拥堵状态

    Fig.  5  Mild congestion state

    图  6  中度拥堵状态

    Fig.  6  Moderate congestion state

    图  7  重度拥堵状态

    Fig.  7  Severe congestion state

    图  8  区域路网拥堵曲线

    Fig.  8  The regional road network congestion curve

    图  9  区域路网拥堵对比曲线

    Fig.  9  The regional road network congestion correlation curve

    表  1  $m_1$ 与 $m_2$ 的融合过程

    Table  1  Fusion process of $m_1$ and $m_2$

    $\theta_1(0.2)$ $\theta_2(0.4)$ $\theta_3(0.2)$ $\theta_4(0.1)$ $\theta_5(0.1)$
    $\theta_1(0.1)$ 0.02 0.04 0.02 0.01 0.01
    $\theta_2(0.4)$ 0.08 0.16 0.08 0.04 0.04
    $\theta_3(0.3)$ 0.06 0.12 0.06 0.03 0.03
    $\theta_4(0.1)$ 0.02 0.04 0.02 0.01 0.01
    $\theta_5(0.1)$ 0.02 0.04 0.02 0.01 0.01
    下载: 导出CSV

    表  2  $m_{1, 2}$ 与 $m_3$ 的融合过程

    Table  2  Fusion process of $m_{1, 2}$ and $m_3$

    $\theta_1(0.08)$ $\theta_2(0.61)$ $\theta_3(0.23)$ $\theta_4(0.04)$ $\theta_5(0.04)$
    $\theta_1(0.1)$ 0.008 0.061 0.023 0.004 0.004
    $\theta_2(0.5)$ 0.040 0.305 0.115 0.020 0.020
    $\theta_3(0.2)$ 0.016 0.112 0.046 0.008 0.008
    $\theta_4(0.1)$ 0.008 0.061 0.023 0.004 0.004
    $\theta_5(0.1)$ 0.008 0.061 0.023 0.004 0.004
    下载: 导出CSV
  • [1] 黄大荣, 宋军, 李淑庆.网络化动态调控下城市路网交通拥堵控制技术综述.交通运输工程学报, 2013, 13(5):105-114 http://d.wanfangdata.com.cn/Periodical_jtysgcxb201305015.aspx

    Huang Da-Rong, Song Jun, Li Shu-Qing. Control technology review of traffic congestion in urban road network under networked dynamic scheduling and control. Journal of Traffic and Transportation Engineering, 2013, 13(5):105-114 http://d.wanfangdata.com.cn/Periodical_jtysgcxb201305015.aspx
    [2] Chen B Y, Lam W H K, Sumalee A, Li Q Q, Li Z C. Vulnerability analysis for large-scale and congested road networks with demand uncertainty. Transportation Research Part A:Policy and Practice, 2012, 46(3):501-516 doi: 10.1016/j.tra.2011.11.018
    [3] 王坤峰, 李镇江, 汤淑明.基于多特征融合的视频交通数据采集方法.自动化学报, 2011, 37(3):322-330 http://www.aas.net.cn/CN/abstract/abstract17438.shtml

    Wang Kun-Feng, Li Zhen-Jiang, Tang Shu-Ming. Visual traffic data collection approach based on multi-features fusion. Acta Automatica Sinica, 2011, 37(3):322-330 http://www.aas.net.cn/CN/abstract/abstract17438.shtml
    [4] Sun C Y, Xing J P, Lu X Y, Yang H, Wu Y, Sun J. An optimization algorithm for traffic state evaluation from real-time floating car data. Journal of Information and Computational Science, 2014, 11(4):1087-1092 doi: 10.12733/issn.1548-7741
    [5] Elhenawy M, Rakha H A. Automatic congestion identification with two-component mixture models. Transportation Research Record:Journal of the Transportation Research Board, 2015, 2489:11-19 doi: 10.3141/2489-02
    [6] Gong Y K, Deng F M, Sinnott R O. Identification of (near) real-time traffic congestion in the cities of Australia through twitter. In: Proceedings of the 1st ACM International Workshop on Understanding the City with Urban Informatics. Melbourne, Australia: ACM, 2015. 7-12
    [7] Hu J M, Mei Q, Qi W P, Zhang J J, Zhang Y. Traffic congestion identification based on image processing. IET Intelligent Transport Systems, 2012, 6(2):153-160 doi: 10.1049/iet-its.2011.0124
    [8] Lu H P, Sun Z Y, Qu W C. Big data-driven based real-time traffic flow state identification and prediction. Discrete Dynamics in Nature and Society, 2015, 2015:Article No. 284906 http://core.ac.uk/display/29449163
    [9] 赵玲, 黄大荣, 宋军.路网交通亚健康状态下交通流的分形特性.控制工程, 2012, 19(4):583-586 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jczdh201204009

    Zhao Ling, Huang Da-Rong, Song Jun. Fractal characteristics of mountain cities' traffic flow with Sub-health state. Control Engineering of China, 2012, 19(4):583-586 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_jczdh201204009
    [10] 王卓, 刁朋娣, 董宏辉, 张新媛, 金茂菁.城市道路网络可靠度及其敏感度研究.中国公路学报, 2013, 26(2):134-139 http://d.wanfangdata.com.cn/Periodical_zgglxb201302019.aspx

    Wang Zhuo, Diao Peng-Di, Dong Hong-Hui, Zhang Xin-Yuan, Jin Mao-Jing. Research on reliability and sensitivity of urban road network. China Journal of Highway and Transport, 2013, 26(2):134-139 http://d.wanfangdata.com.cn/Periodical_zgglxb201302019.aspx
    [11] Widyantoro D H, Enjat Munajat M D. Fuzzy traffic congestion model based on speed and density of vehicle. In: Proceedings of the 2014 International Conference of Advanced Informatics: Concept, Theory and Application. Bandung, Indonesia: IEEE, 2014. 321-325
    [12] 张婧, 任刚.城市道路交通拥堵状态时空相关性分析.交通运输系统工程与信息, 2015, 15(2):175-181 http://www.tseit.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18976

    Zhang Jing, Ren Gang. Spatio-temporal correlation analysis of urban traffic congestion diffusion. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2):175-181 http://www.tseit.org.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=18976
    [13] 何兆成, 周亚强, 余志.基于数据可视化的区域交通状态特征评价方法.交通运输工程学报, 2016, 16(1):133-140 http://www.cqvip.com/QK/90752X/201601/668198168.html

    He Zhao-Cheng, Zhou Ya-Qiang, Yu Zhi. Regional traffic state evaluation method based on data visualization. Journal of Traffic and Transportation Engineering, 2016, 16(1):133-140 http://www.cqvip.com/QK/90752X/201601/668198168.html
    [14] Habtie A B, Abraham A, Midekso D. Cellular network based real-time urban road traffic state estimation framework using neural network model estimation. In: Proceedings of the 2015 IEEE Computational Intelligence. Cape Town, South Africa: IEEE, 2015. 38-44
    [15] 乔少杰, 李天瑞, 韩楠, 高云军, 元昌安, 王晓腾, 唐常杰.大数据环境下移动对象自适应轨迹预测模型.软件学报, 2015, 26(11):2869-2883 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rjxb201511011

    Qiao Shao-Jie, Li Tian-Rui, Han Nan, Gao Yun-Jun, Yuan Chang-An, Wang Xiao-Teng, Tang Chang-Jie. Self-adaptive trajectory prediction model for moving objects in big data environment. Journal of Software, 2015, 26(11):2869-2883 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rjxb201511011
    [16] 赵克勤.集对分析及其初步应用.大自然探索, 1994, 13(1):67-72 http://www.wenkuxiazai.com/doc/225c997add88d0d232d46aa3.html

    Zhao Ke-Qin. Set pair analysis and its prelimiary application. Exploration of Nature, 1994, 13(1):67-72 http://www.wenkuxiazai.com/doc/225c997add88d0d232d46aa3.html
    [17] Liu C F, Zhang L, Yang A M, Zhao S J, Li D. The evaluation model of international science and technology cooperation based on set pair analysis. Journal of Interdisciplinary Mathematics, 2014, 17(1):95-108 doi: 10.1080/09720502.2014.881151
    [18] 段在鹏, 钱新明, 刘振翼, 黄平, 夏登友, 多英全.基于指标重要度及代价的系统评价后续决策.系统工程与电子技术, 2015, 37(7):1587-1595 doi: 10.3969/j.issn.1001-506X.2015.07.19

    Duan Zai-Peng, Qian Xin-Ming, Liu Zhen-Yi, Huang Ping, Xia Deng-You, Duo Ying-Quan. Follow-up decision for system evaluation based on index importance and costs. Systems Engineering and Electronics, 2015, 37(7):1587-1595 doi: 10.3969/j.issn.1001-506X.2015.07.19
    [19] Yang Y F, Yang A M, Zhang H C. Application of set pair analysis in the material clustering. Applied Mechanics and Materials, 2014, 443:707-710 https://www.scientific.net/amm.443.707.pdf
    [20] Ruan G C. Customs risk identification and application based on set pair analysis. In: Proceedings of the 2012 International Conference on Cybernetics and Informatics. New York, USA: Springer, 2013, 163: 1229-1237
    [21] Wang H F, Lin D Y, Qiu J, Ao L L, Du Z D, He B T. Research on multiobjective group decision-making in condition-based maintenance for transmission and transformation equipment based on D-S evidence theory. IEEE Transactions on Smart Grid, 2015, 6(2):1035-1045 doi: 10.1109/TSG.2015.2388778
    [22] 徐晓滨, 张镇, 李世宝, 文成林.基于诊断证据静态融合与动态更新的故障诊断方法.自动化学报, 2016, 42(1):107-121 http://www.aas.net.cn/CN/abstract/abstract18800.shtml

    Xu Xiao-Bin, Zhang Zhen, Li Shi-Bao, Wen Cheng-Lin. Fault diagnosis based on fusion and updating of diagnosis evidence. Acta Automatica Sinica, 2016, 42(1):107-121 http://www.aas.net.cn/CN/abstract/abstract18800.shtml
    [23] 丛林虎, 徐廷学, 荀凯.基于D-S证据理论的导弹制导控制系统的联合最小二乘支持向量机预测模型.兵工学报, 2015, 36(8):1466-1472 http://d.old.wanfangdata.com.cn/Periodical/bgxb201508013

    Cong Lin-Hu, Xu Ting-Xue, Gou Kai. ULS-SVM prediction model of missile guidance and control systems based on D-S evidence theory. Acta Armamentarii, 2015, 36(8):1466-1472 http://d.old.wanfangdata.com.cn/Periodical/bgxb201508013
    [24] 李瑞敏, 马玮.基于BP神经网络与D-S证据理论的路段平均速度融合方法.交通运输工程学报, 2014, 14(5):111-118 http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405017.htm

    Li Rui-Min, Ma Wei. Fusion method of road section average speed based on BP neural network and D-S evidence theory. Journal of Traffic and Transportation Engineering, 2014, 14(5):111-118 http://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405017.htm
    [25] 宋亚飞, 王晓丹, 雷蕾.基于直觉模糊集的时域证据组合方法研究.自动化学报, 2016, 42(9):1322-1338 http://www.aas.net.cn/CN/abstract/abstract18921.shtml

    Song Ya-Fei, Wang Xiao-Dan, Lei Lei. Combination of temporal evidence sources based on intuitionistic fuzzy sets. Acta Automatica Sinica, 2016, 42(9):1322-1338 http://www.aas.net.cn/CN/abstract/abstract18921.shtml
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2695
  • HTML全文浏览量:  417
  • PDF下载量:  987
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 录用日期:  2016-11-17
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回