Study on Active Disturbance Reject Attitude Control Technology of Multi-satellite Upper Stage
-
摘要: 针对多星发射的运载火箭上面级在入轨段由于卫星分离产生的质量偏移,从而引起的三轴姿态严重耦合问题展开了研究,提出了基于广义扩张状态观测器的改进预测函数控制姿态控制方法.该控制方法将质心偏移造成上面级结构参数偏差和引入的干扰力矩以及其他未知系统参数偏差、外界扰动和未建模动态视为集总扰动,并将该非匹配干扰通过等效输入扰动技术转换为匹配干扰,由广义扩张状态观测器对变化后的系统状态和未知集总扰动同时观测.将集总扰动在反馈回路予以补偿保证了预测模型与上面级真实动力学模型有较高匹配度,进一步保证预测函数控制有较高的控制跟踪精度和较快的响应速度,并对外界扰动和参数偏差有较强的鲁棒性.文中算例仿真和性能对比验证了该方法的有效性及可行性.Abstract: For the issue of severe coupling attitude control of multi-satellite upper stage for sub satellite deploying, an improved predictive functional control (PFC) based on generalized extended state observer (GESO) is presented in this paper. All the structure parameter deviations of upper stage and induced disturbance torque that are resulted by centroid eccentricity, companied with system parameter deviation, external disturbance and unmodeled dynamics can be regarded as a lumped disturbance. This mismatched disturbance is converted into matched disturbance with equivalent-input-disturbance (EID) technique, and then estimated by GESO as well as the transformed system states in an integrated manner. The estimated lumped disturbance can be eliminated in a negative feedback loop, which promises that the predictive model always matches the real upstage dynamics model and further provides PFC with precise tracking, fast response, as well as strong robust against external disturbance and parameter deviation. A simulation example and a comparison with some prominent methods in the presence of significant disturbance and parameter uncertainty demonstrate the robustness and effectiveness of the proposed method.1) 本文责任编委 孙富春
-
表 1 上面级RCS相关参数
Table 1 RCS parameter of upper stage
上面级RCS相关参数 参数值 主发动机推力 2000 N 主发动机至未偏心质心距离 2500 mm 低档RCS推力器推力 30 N 高档RCS推力器推力 300 N RCS推力器滚转力臂 500 mm RCS推力器偏航力臂 2500 mm RCS推力器俯仰力臂 2500 mm -
[1] 崔乃刚, 张利宾, 浦甲伦.先进上面级变轨段姿态解耦控制研究.宇航学报, 2011, 32 (9):1911-1917 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZJC201205001477.htmCui Nai-Gang, Zhang Li-Bin, Pu Jia-Lun. Study on attitude decoupling control for advanced upper stage during orbital maneuver. Journal of Astronautics, 2011, 32 (9):1911-1917 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-KZJC201205001477.htm [2] 徐延万.液体弹道导弹与运载火箭系列:控制系统(上).北京:中国宇航出版社, 2009. 621-622Xu Yan-Wan. Liquid-Fueled Ballistic Missile and Launch Vehicle:Control System (Ⅰ). Beijing:China Astronautic Publishing House, 2009. 621-622 [3] Weerdt E D, van Kampen E, van Gemert D, Chu Q P, Mulder J A. Adaptive nonlinear dynamic inversion for spacecraft attitude control with fuel sloshing. In: Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii: AIAA, 2008. doi: 10.2514/6.2008-7162 [4] 张军, 张尚强, 刘志林.多星发射上面级的姿态解耦控制.电机与控制学报, 2009, 13 (S1):169-172, 177 http://d.wanfangdata.com.cn/Periodical_ddyhtyzjs200705004.aspxZhang Jun, Zhang Shang-Qiang, Liu Zhi-Lin. Decoupling attitude control of upper stage. Electric Machines and Control, 2009, 13 (S1):169-172, 177 http://d.wanfangdata.com.cn/Periodical_ddyhtyzjs200705004.aspx [5] 席裕庚.预测控制.第2版.北京:国防工业出版社, 2013.Xi Yu-Geng. Predictive Control (Second Edition). Beijing:National Defense Industry Press, 2013. [6] 席裕庚, 李德伟, 林姝.模型预测控制——现状与挑战.自动化学报, 2013, 39 (3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtmlXi Yu-Geng, Li De-Wei, Lin Shu. Model predictive control-status and challenges. Acta Automatica Sinica, 2013, 39 (3):222-236 http://www.aas.net.cn/CN/abstract/abstract17874.shtml [7] Mayne D Q, Rawlings J B, Rao C V, Sockaert P O M. Constrained model predictive control:stability and optimality. Automatica, 2000, 36 (6):789-814 doi: 10.1016/S0005-1098(99)00214-9 [8] Kasdirin H A. Predictive functional control (PFC) for use in autopilot design[Master thesis], University of Sheffield, UK, 2006 http://eprints.utem.edu.my/14619/ [9] Tang W Q, Cai Y L. Predictive functional control-based missile autopilot design. Journal of Guidance, Control, and Dynamics, 2012, 35 (5):1450-1455 doi: 10.2514/1.56329 [10] Liu H X, Li S H. Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Transactions on Industrial Electronics, 2012, 59 (2):1171-1183 doi: 10.1109/TIE.2011.2162217 [11] 张培建, 吴建国.基于在线辨识的特征模型预测函数控制研究.计算机仿真, 2010, 27 (11):299-302 doi: 10.3969/j.issn.1006-9348.2010.11.076Zhang Pei-Jian, Wu Jian-Guo. Research of characteristic model predictive functional control based on on-line identification. Computer Simulation, 2010, 27 (11):299-302 doi: 10.3969/j.issn.1006-9348.2010.11.076 [12] 张日东, 王树青.基于神经网络的非线性系统预测函数控制.控制理论与应用, 2007, 24 (6):949-953, 958 https://mall.cnki.net/lunwen-2005148628.htmlZhang Ri-Dong, Wang Shu-Qing. Neural network based predictive functional control for nonlinear systems. Control Theory Applications, 2007, 24 (6):949-953, 958 https://mall.cnki.net/lunwen-2005148628.html [13] Satoh T, Kaneko K, Saito N. Performance improvement of predictive functional control: a disturbance observer approach. In: Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (IECON 2011). Melbourne, VIC, Australia: IEEE, 2011. 669-674 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6119390 [14] Zhang Y H, Yang H B, Jiang Z Y, Hu F, Zhang W H. Robust predictive functional control for flight vehicles based on nonlinear disturbance observer. International Journal of Aerospace Engineering, 2015, 2015: Article No. 878971 https://www.researchgate.net/publication/282478287_Robust_Predictive_Functional_Control_for_Flight_Vehicles_Based_on_Nonlinear_Disturbance_Observer [15] She J H, Fang M X, Ohyama Y, Hashimoto H, Wu M. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics, 2008, 55 (1):380-389 doi: 10.1109/TIE.2007.905976 [16] She J H, Xin X, Pan Y D. Equivalent-input-disturbance approach-analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE/ASME Transactions on Mechatronics, 2011, 16 (2):330-340 doi: 10.1109/TMECH.2010.2043258 [17] Gao F, Wu M, She J H, Cao W H. Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach. Applied Mathematics and Computation, 2016, 282:244-253 doi: 10.1016/j.amc.2016.02.014 [18] Li S H, Yang J, Chen W H, Chen X S. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 2012, 59 (12):4792-4802 doi: 10.1109/TIE.2011.2182011 [19] Panchal B, Talole S E. Generalized ESO and predictive control based robust autopilot design. Journal of Control Science and Engineering, 2016, 2016: Article No. 5741603 http://www.researchgate.net/publication/303507285_Generalized_ESO_and_Predictive_Control_Based_Robust_Autopilot_Design [20] 贾沛然, 陈克俊, 何力.远程火箭弹道学.长沙:国防科技大学出版社, 2009.Jia Pei-Ran, Chen Ke-Jun, He Li. Long-range Missile Ballistics. Changsha:NUDT Press, 2009. [21] 许志, 唐硕. RLV再入返回喷流控制策略研究.飞行力学, 2009, 27(6):44-47 http://www.wenkuxiazai.com/doc/9b672765ed630b1c59eeb5d1.htmlXu Zhi, Tang Shuo. RCS control allocation problem for RLV re-entry. Flight Dynamics, 2009, 27 (6):44-47 http://www.wenkuxiazai.com/doc/9b672765ed630b1c59eeb5d1.html [22] 臧希恒, 唐硕, 闫晓东. RCS/气动舵自适应控制分配方法研究.飞行力学, 2013, 31 (2):152-156 http://www.cqvip.com/QK/92336X/201302/45456612.htmlZang Xi-Heng, Tang Shuo, Yan Xiao-Dong. Study on selfadaptive control allocation of RCS/aerosurface. Flight Dynamics, 2013, 31 (2):152-156 http://www.cqvip.com/QK/92336X/201302/45456612.html