2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于牵张反射阈值的上肢痉挛评定方法与装置及其效度信度研究

胡保华 穆景颂 朱宗俊 赵鹏鹏 王勇

胡保华, 穆景颂, 朱宗俊, 赵鹏鹏, 王勇. 基于牵张反射阈值的上肢痉挛评定方法与装置及其效度信度研究. 自动化学报, 2018, 44(1): 129-139. doi: 10.16383/j.aas.2018.c160240
引用本文: 胡保华, 穆景颂, 朱宗俊, 赵鹏鹏, 王勇. 基于牵张反射阈值的上肢痉挛评定方法与装置及其效度信度研究. 自动化学报, 2018, 44(1): 129-139. doi: 10.16383/j.aas.2018.c160240
HU Bao-Hua, MU Jing-Song, ZHU Zong-Jun, ZHAO Peng-Peng, WANG Yong. Upper Limb Spasticity Evaluation Based on Stretch Reflex Threshold: Method, Device, Validity and Reliability. ACTA AUTOMATICA SINICA, 2018, 44(1): 129-139. doi: 10.16383/j.aas.2018.c160240
Citation: HU Bao-Hua, MU Jing-Song, ZHU Zong-Jun, ZHAO Peng-Peng, WANG Yong. Upper Limb Spasticity Evaluation Based on Stretch Reflex Threshold: Method, Device, Validity and Reliability. ACTA AUTOMATICA SINICA, 2018, 44(1): 129-139. doi: 10.16383/j.aas.2018.c160240

基于牵张反射阈值的上肢痉挛评定方法与装置及其效度信度研究

doi: 10.16383/j.aas.2018.c160240
基金项目: 

科技部中小企业创新基金 11C26214402042

国家自然科学基金 41076061

详细信息
    作者简介:

    胡保华  合肥工业大学机械工程学院博士研究生. 2012年获南昌大学学士学位.主要研究方向为信号处理与康复机器人. E-mail:hanyu19900205@126.com

    穆景颂  安徽省立医院康复医学科主治医师.2010年获得安徽医科大学硕士学位.主要研究方向为神经疾患康复.E-mail:ahslyymjs@163.com

    朱宗俊  安徽中医药大学第一附属医院针灸康复科主治医师.2006年获得安徽医科大学学士学位.主要研究方向为神经疾患康复.E-mail:azyzjj@163.com

    赵鹏鹏  合肥工业大学机械工程学院硕士研究生.2014年获得三峡大学学士学位.主要研究方向为康复机器人.E-mail:zpphfyt@126.com

    通讯作者:

    王勇  合肥工业大学机械工程学院教授.2008年获得合肥工业大学博士学位.主要研究方向为机械设计, 传感及测量技术, 服务机器人.本文通信作者.E-mail:simenkouwang@sina.com

Upper Limb Spasticity Evaluation Based on Stretch Reflex Threshold: Method, Device, Validity and Reliability

Funds: 

Ministry of Science and Technology of Small and Medium-sized Enterprise Innovation Fund 11C26214402042

National Natural Science Foundation of China 41076061

More Information
    Author Bio:

     Ph. D. candidate at the School of Mechanical Engineering, Hefei University of Technology. He received his bachelor degree from Nanchang University in 2012. His research interest covers signal processing and rehabilitation robot

     Attending doctor in the Department of Rehabilitation Medicine, Anhui Provincial Hospital. He received his master degree from Anhui Medical University in 2010. His main research interest is neurological rehabilitation

     Attending doctor in the Department of Acupuncture & Rehabilitation Department, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine. He received his bachelor degree from Anhui Medical University in 2006. His main research interest is neurological rehabilitation

     Master student at the School of Mechanical Engineering, Hefei University of Technology. She received her bachelor degree from China Three Gorges University in 2014. Her main research interest is rehabilitation robot

    Corresponding author: WANG Yong  Professor at the School of Mechanical Engineering, Hefei University of Technology. He received his Ph. D. degree from Hefei University of Technology in 2008. His research interest covers mechanical design, sensor and testing technology, and service robots. Corresponding author of this paper
  • 摘要: 针对目前临床痉挛评定主观性大,信度与效度有待提高的问题,提出了一种新的基于牵张反射阈值的痉挛评定方法,利用关节角加速度变化判定牵张反射阈值,通过设计相应装置检验了牵张反射阈值在上肢痉挛评定中的信度与效度,并探讨了加速度变化在上肢痉挛评定中的信度与效度.4位检查者利用改良Ashworth量表(Modified Ashworth scale,MAS)及该痉挛检测装置对招募的22例伴随有上肢痉挛症状的受试者进行了痉挛评定.将评定过程中采集的牵张反射阈值以及加速度平均变化值(Acceleration mean variance,AMV)与MAS评分进行相关性分析,显示牵张反射阈值数据与MAS评分显著相关,相关性满足(r=-0.831~-0.953,P < 0.05),AMV与MAS评分相关性满足(r=0.665~0.900,P < 0.05).它们重测信度分别满足(r=0.890~0.962,P < 0.05)和(r=0.632~0.928,P < 0.05).实验结果表明该方法及装置可为痉挛评定提供一种实用的定量分析手段.
    1)  本文责任编委 王卫群
  • 图  1  装置示意图

    Fig.  1  Schematic diagram of the device

    图  2  利用本装置进行上肢痉挛评定

    Fig.  2  Assessment of spasticity by our device

    图  3  本文实验流程图

    Fig.  3  The flow chart of the experiment

    图  4  一个伸展周期内肘关节运动参数变化

    Fig.  4  Change of motion parameter during an extension period

    图  5  每位检查者$\theta_p/\theta_{\rm rom}$与MAS评分散点图, *$P<0.05$, $N$表示受试者个数

    Fig.  5  Scatterplots of the MAS vs. $\theta_p/\theta_{\rm rom}$ of each evaluator, *$P<0.05$, $N$ is the number of the subjects

    图  6  每位检查者AMV与MAS评分散点图, *$P<0.05$, $N$表示受试者个数

    Fig.  6  Scatterplots of the MAS vs. AMV of each evaluator, *$P<0.05$, $N$ is the number of the subjects

    图  7  每位检查者$\theta_p/\theta_{\rm rom}$重测关系图

    Fig.  7  The test-retest reliability of $\theta_p/\theta_{\rm rom}$ of each evaluator

    图  8  每位检查者AMV重测关系图

    Fig.  8  The test-retest reliability of AMV of each evaluator

    表  1  受试者个人相关信息

    Table  1  Demographic characteristics of the participants

    病例 年龄 病程 性别 患侧 患病部位 痉挛肌群 ROM ($^{\circ})$ MAS Test MAS Retest
    Test Retest E1 E2 E1 E2
    A S1 64 6月 左侧脑梗塞 屈肘肌群 96 104 0 0 0 0
    S2 60 7月 左侧脑梗死 屈肘肌群 120 126 0 0 0 0
    S3 66 3月 右侧脑梗死 伸肘肌群 100 104 2 2 2 2
    S4 68 3月 右侧脑栓塞 屈肘肌群 132 124 1 1 1 1
    S5 66 4月 右侧脑梗塞 屈肘肌群 113 114 1.5 1.5 1.5 1.5
    S6 37 2月 右侧脑出血 屈肘肌群 114 117 1 1 1 1
    S7 73 3月 左侧脑梗塞 屈肘肌群 105 113 0 0 0 0
    S8 51 2月 右侧脑梗塞 屈肘肌群 94 99 1 1 1 1
    S9 45 2月 右侧脑出血 屈肘肌群 100 101 2 2 2 2
    S10 30 2月 右侧脑梗塞 屈肘肌群 106 106 1.5 1.5 1.5 1.5
    S11 62 6月 右侧脑梗塞 伸肘肌群 130 135 3 3 3 3
    S12 68 3月 右侧脑栓塞 伸肘肌群 123 125 3 3 3 3
    S13 37 2月 右侧脑出血 伸肘肌群 114 117 2 2 2 2
    S14 51 2月 右侧脑梗塞 伸肘肌群 98 100 1.5 1.5 1.5 1.5
    Test Retest E3 E4 E3 E4
    B S15 32 14月 右侧脑出血 屈肘肌群 128 129 1.5 1.5 1.5 1.5
    S16 37 15月 左侧脑梗塞 屈肘肌群 118 120 2 2 2 2
    S17 39 2年 左侧脑出血 屈肘肌群 103 106 0 0 0 0
    S18 21 2年 左脑挫裂伤 屈肘肌群 110 110 3 3 3 3
    S19 41 15天 右侧脑出血 屈肘肌群 101 100 1.5 1.5 1.5 1.5
    S20 30 9月 右侧脑出血 屈肘肌群 110 115 1 1 1 1
    S21 46 1年 左侧脑出血 屈肘肌群 143 145 1.5 1.5 1.5 1.5
    S22 54 1月 左侧脑梗死 屈肘肌群 132 136 1 1 1 1
    A:安徽省立医院, B:安徽中医药大学第一附属医院; ROM: range of motion; E1 $\sim$ E4: Evaluator1 $\sim$ 4, 检查者1 $\sim$ 4; S1 $\sim$ S22: Subject1 $\sim$ 22, 受试者1 $\sim$ 22; MAS Test:第一次MAS评分, MAS Retest:三天后MAS评分.
    下载: 导出CSV

    表  2  第一次以及三天后测试结果

    Table  2  Experimental result at test and at retest

    Test Retest
    受试者 $\theta_{ p}$ $\theta_{ p}$/$\theta_{\rm rom}$ AMV $\theta_{ p}$ $\theta_{ p}$/$\theta_{\rm rom}$ AMV $\theta_{ p}$ $\theta_{ p}$/$\theta_{\rm rom}$ AMV $\theta_{ p}$ $\theta_{ p}$/$\theta_{\rm rom}$ AMV
    A E1 E2 E1 E2
    S1 96 1.00 0 96 1.00 0 104 1.00 0 104 1.00 0
    S2 120 1.00 0 120 1.00 0 126 1.00 0 126 1.00 0
    S3 38 0.38 0.698 34 0.34 0.423 50 0.48 0.596 46 0.44 0.624
    S4 64 0.48 0.412 93 0.70 0.392 70 0.56 0.321 80.63 0.65 0.469
    S5 64 0.57 0.910 50 0.44 0.862 58 0.51 0.867 68 0.60 0.453
    S6 75 0.66 0.192 64 0.56 0.182 62 0.53 0.260 75 0.64 0.175
    S7 105 1.00 0 105 1.00 0 113 1.00 0 113 1.00 0
    S8 71 0.76 0.526 56 0.60 0.421 54 0.55 1.501 47 0.47 0.479
    S9 36 0.36 0.636 30 0.30 0.584 27 0.27 0.673 23 0.23 0.702
    S10 50 0.47 0.498 44 0.42 0.455 53 0.50 0.426 55 0.52 0.452
    S11 27 0.21 0.565 33 0.25 0.627 22 0.16 1.421 40 0.30 0.526
    S12 23 0.19 1.268 25 0.20 0.746 46 0.37 0.837 29 0.23 1.105
    S13 22 0.19 0.412 30 0.26 0.536 33 0.28 0.459 40 0.34 0.381
    S14 42 0.43 0.526 46 0.47 0.469 49 0.49 0.450 55 0.55 0.502
    B E3 E4 E3 E4
    S15 54 0.42 0.380 80 0.63 0.485 64 0.50 0.325 65 0.50 0.416
    S16 57 0.38 0.440 48 0.41 0.648 68 0.57 0.574 51 0.43 0.464
    S17 103 1.00 0 103 1.00 0 106 1.00 0 106 1.00 0
    S18 38 0.35 1.172 28 0.25 0.947 29 0.26 0.804 37 0.34 2.828
    S19 42 0.42 0.206 50 0.50 0.258 55 0.55 0.249 37 0.37 0.225
    S20 63 0.57 0.364 60 0.55 0.426 74 0.64 0.378 68 0.59 0.301
    S21 60 0.42 0.628 70 0.49 0.450 53 0.37 0.459 50 0.34 0.416
    S22 74 0.56 0.488 87 0.66 0.598 66 0.49 0.450 77 0.57 0.459
    注: $\theta_{p}$($^{\circ}$); AMV(m/s$^{2}$).
    下载: 导出CSV

    表  3  $\theta_{ p}$/$\theta_{\rm rom}$及Amv与MAS的相关性

    Table  3  The correlation between the MAS scores and $\theta_{ p}$/$\theta _{\rm rom}$ and between the MAS scores and AMV

    相关性分析结果 装置数据 MAS评分
    相关系数 $P$
    Test Retest Test Retest
    E1 $\theta_{ p}$/$\theta_{\rm rom}$ $-$0.944 $-$0.918 $P<$ 0.05 $P<$ 0.05
    AMV 0.821 0.665 $P<$ 0.05 $P<$ 0.05
    E2 $\theta_{ p}$/$\theta_{\rm rom}$ $-$0.953 $-$0.931 $P<$ 0.05 $P<$ 0.05
    AMV 0.841 0.864 $P<$ 0.05 $P<$ 0.05
    E3 $\theta_{ p}$/$\theta_{\rm rom}$ $-$0.855 $-$0.846 $P<$ 0.05 $P<$ 0.05
    AMV 0.857 0.900 $P<$ 0.05 $P<$ 0.05
    E4 $\theta_{ p}$/$\theta_{\rm rom}$ $-$0.940 $-$0.831 $P<$ 0.05 $P<$ 0.05
    AMV 0.873 0.813 $P<$ 0.05 $P<$ 0.05
    下载: 导出CSV

    表  4  $\theta_{ p}$/$\theta_{\rm rom}$及加速度重测相关系数

    Table  4  The test-retest reliability of $\theta_{ p}$/$\theta_{\rm rom}$ and AMV

    相关性分析结果 重测相关参数
    相关系数 $P$值
    E1 $\theta_{ p}$/$\theta_{\rm rom}$ 0.938 $P<$ 0.05
    AMV 0.632 $P<$ 0.05
    E2 $\theta_{ p}$/$\theta_{\rm rom}$ 0.962 $P<$ 0.05
    AMV 0.824 $P<$ 0.05
    E3 $\theta_{ p}$/$\theta_{\rm rom}$ 0.890 $P<$ 0.05
    AMV 0.928 $P<$ 0.05
    E4 $\theta_{ p}$/$\theta_{\rm rom}$ 0.912 $P<$ 0.05
    AMV 0.796 $P<$ 0.05
    下载: 导出CSV

    表  5  装置结果验证

    Table  5  Result validation of device

    受试者 年龄
    (岁)
    患病部位 患侧 装置结果 装置预测MAS MAS评分
    $\theta_{ p}$/$\theta_{\rm rom}$ AMV $\sqrt{(\Delta \theta)^{2}}$ $\sqrt{\left({\Delta a} \right)^{2}}$ $\sqrt{(\Delta \theta)^{2}+\left({\Delta a} \right)^{2}}$
    S1 57 右侧脑出血 左侧 0.65 0.320 1 1 1 1
    S2 46 左侧脑干梗塞 右侧 0.49 0.435 1.5 2 1.5 1.5
    下载: 导出CSV
  • [1] Bar-On L, Molenaers G, Aertbeliën E, Monari D, Feys H, Desloovere K. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Research in Developmental Disabilities, 2014, 35(12):3354-3364 doi: 10.1016/j.ridd.2014.07.053
    [2] 王广志.肌肉痉挛定量评估的研究进展.现代康复, 2000, 4(5):650-652 http://news.medlive.cn/ns/info-progress/show-131231_181.html

    Wang Guang-Zhi. The advancing of quantitative assessment of spasticity. Modern Rehabilitation, 2000, 4(5):650-652 http://news.medlive.cn/ns/info-progress/show-131231_181.html
    [3] Feldman R G, Young R R, Koella W P. Spasticity: Disordered Motor Control. Chicago: Year Book Medical Publishers, 1980. 485-495
    [4] Ishikawa S, Okamoto S, Isogai K, Akiyama Y, Yanagihara N, Yamada Y. Wearable dummy to simulate joint impairment: severity-based assessment of simulated spasticity of knee joint. In: Proceedings of the 2013 IEEE/SICE International Symposium on System Integration. Kobe, Japan: IEEE, 2013. 300-305
    [5] Gracies J M, Brashear A, Jech R, McAllister P, Banach M, Valkovic P, Walker H, Marciniak C, Deltombe T, Skoromets A, Khatkova S, Edgley S, Gul F, Catus F, De Fer Beatrice B, Vilain C, Picaut P. Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury:a double-blind randomised controlled trial. The Lancet Neurology, 2015, 14(10):992-1001 doi: 10.1016/S1474-4422(15)00216-1
    [6] Kim J-H, Park H-S, Damiano D L. Accuracy and reliability of haptic spasticity assessment using HESS (Haptic Elbow Spasticity Simulator). In: Proceedings of the 33rd Annual International Conference of the IEEE EMBS. Boston, USA: IEEE, 2001. 8527-8530
    [7] 李雪萍, 程凯, 周俊, 杨婷, 于俊龙, 陈安亮, 张红飞.表面肌电联合等速测试评定肌痉挛的临床研究.中国现代医学杂志, 2010, 20(4):605-608, 611 http://www.docin.com/p-1694078342.html

    Li Xue-Ping, Cheng Kai, Zhou Jun, Yang Ting, Yu Jun-Long, Chen An-Liang, Zhang Hong-Fei. Clinical assessment of muscle spasticity in stroke patients with surface electromyography and isokinetic assessment. China Journal of Modern Medicine, 2010, 20(4):605-608, 611 http://www.docin.com/p-1694078342.html
    [8] Klingels K, De Cock P, Molenaers G, Desloovere K, Huenaerts C, Jaspers E, Feys H. Upper limb motor and sensory impairments in children with hemiplegic cerebral palsy. Can they be measured reliably? Disability and Rehabilitation, 2010, 32(5):409-416 doi: 10.3109/09638280903171469?needAccess=true
    [9] Fleuren J F M, Voerman G E, Erren-Wolters C V, Snoek G J, Rietman J S, Hermens H J, Nene A V. Stop using the Ashworth Scale for the assessment of spasticity. Journal of Neurology, Neurosurgery & Psychiatry, 2010, 81(1):46-52 http://jnnp.bmj.com/content/jnnp/81/1/46.full.pdf
    [10] Mehrholz J, Wagner K, Meissner D, Grundmann K, Zange C, Koch R, Pohl M. Reliability of the modified Tardieu scale and the modified Ashworth scale in adult patients with severe brain injury:a comparison study. Clinical Rehabilitation, 2015, 19(7):751-759 https://www.researchgate.net/publication/7516824_Reliability_of_the_Modified_Tardieu_Scale_and_the_Modified_Ashworth_Scale_in_adult_patients_with_severe_brain_injury_A_comparison_study
    [11] Kaya T, Goksel K A, Gunaydin R, Koc A, Altundal E U. Inter-rater reliability of the modified Ashworth scale and modified modified Ashworth scale in assessing poststroke elbow flexor spasticity. International Journal of Rehabilitation Research, 2011, 34(1):59-64 doi: 10.1097/MRR.0b013e32833d6cdf
    [12] Kim K S, Seo J H, Song C G. Portable measurement system for the objective evaluation of the spasticity of hemiplegic patients based on the tonic stretch reflex threshold. Medical Engineering & Physics, 2011, 33(1):62-69 https://www.researchgate.net/publication/47382015_Portable_measurement_system_for_the_objective_evaluation_of_the_spasticity_of_hemiplegic_patients_based_on_the_tonic_stretch_reflex_threshold
    [13] Abdollahi I, Taghizadeh A, Shakeri H, Eivazi M, Jaberzadeh S. The relationship between isokinetic muscle strength and spasticity in the lower limbs of stroke patients. Journal of Bodywork and Movement Therapies, 2014, 19(2):284-290 https://www.sciencedirect.com/science/article/pii/S1360859214001296
    [14] Wu Y N, Park H-S, Ren Y P, Deborah G-S, Chen J J, Zhang L Q. Measurement of elbow spasticity in stroke patients using a manual spasticity evaluator. In: Proceedings of the 28th IEEE EMBS Annual International Conference. New York, USA: IEEE, 2006. 3974-3977
    [15] 宋凡, 张峰, 朱玉连, 沈建, 白玉龙, 李放, 胡永善, 吴毅.等速测试指标与改良Ashworth法用于评定肌痉挛的相关性研究.中国康复医学杂志, 2008, 23(7):615-617 http://www.doc88.com/p-9425621312124.html

    Song Fan, Zhang Feng, Zhu Yu-Lian, Shen Jian, Bai Yu-Long, Li Fang, Hu Yong-Shan, Wu Yi. Research of the correlation between the isokinetic parameters and the modified Ashworth scores in spasticity measurement. Chinese Journal of Rehabilitation Medicine, 2008, 23(7):615-617 http://www.doc88.com/p-9425621312124.html
    [16] Fujisawa T, Takagi M, Takahashi Y, Inoue K, Terada T, Kawakami Y, Komeda T. Basic research on the upper limb patient simulator. In: Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics. Noordwijk, The Netherlands: IEEE, 2007. 48-51
    [17] Park H-S, Kim J-H, Damiano D L. Development of a haptic elbow spasticity simulator (HESS) for improving accuracy and reliability of clinical assessment of spasticity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(3):361-370 doi: 10.1109/TNSRE.2012.2195330
    [18] Takhashi Y, Komeda T, Koyama H, Yamamoto S, Arimatsu T, Kawakami Y, Inoue K, Ito Y. Development of an upper limb patient simulator for physical therapy exercise. In: Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics. Zurich, Switzerland: IEEE, 2011. 1117-1120
    [19] 李林, 纪仲秋, 李艳霞, 刘威彤.关节角度重置法、运动最小阈值测量法和力量重现法的相关性研究.天津体育学院学报, 2016, 31(1):36-40 http://c.wanfangdata.com.cn/periodical/tjtyxyxb/2016-1.aspx

    Li Lin, Ji Zhong-Qiu, Li Yan-Xia, Liu Wei-Tong. Correlation between joint position sense reproduce test, the threshold of detection of movement test and force sense reproduce test. Journal of TUS, 2016, 31(1):36-40 http://c.wanfangdata.com.cn/periodical/tjtyxyxb/2016-1.aspx
    [20] Calota A, Feldman A G, Levin M F. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clinical Neurophysiology, 2008, 119(10):2329-2337 doi: 10.1016/j.clinph.2008.07.215
    [21] Pandyan A D, Price C I M, Rodgers H, Barnes M P, Johnson G R. Biomechanical examination of a commonly used measure of spasticity. Clinical Biomechanics, 2001, 16(10):859-865 doi: 10.1016/S0268-0033(01)00084-5
    [22] Pandyan A D, Price C I M, Barnes M P, Johnson G R. A biomechanical investigation into the validity of the modified Ashworth scale as a measure of elbow spasticity. Clinical Rehabilitation, 2003, 17(3):290-294 doi: 10.1191/0269215503cr610oa
    [23] McCrea P H, Eng J J, Hodgson A J. Linear spring-damper model of the hypertonic elbow:reliability and validity. Journal of Neuroscience Methods, 2003, 128(1-2):121-128 doi: 10.1016/S0165-0270(03)00169-9
    [24] Grow D I, Wu M N, Locastro M J, Arora S K, Bastian A J, Okamura A M. Haptic simulation of elbow joint spasticity. In:Proceedings of the 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Nevada, USA:IEEE, 2008. 475-476
    [25] 韩京清.从PID技术到"自抗扰控制"技术.控制工程, 2002, 9(3):13-18 http://mall.cnki.net/magazine/Article/JZDF200203004.htm

    Han Jing-Qing. From PID technique to active disturbances rejection control technique. Control Engineering of China, 2002, 9(3):13-18 http://mall.cnki.net/magazine/Article/JZDF200203004.htm
    [26] 韩建达, 谈大龙, 蒋新松.直接驱动机器人关节加速度反馈解耦控制.自动化学报, 2000, 26(3):289-295 http://www.aas.net.cn/CN/abstract/abstract16059.shtml

    Han Jian-Da, Tan Da-Long, Jiang Xin-Song. Joint acceleration feedback control for direct-drive robot decoupling. Acta Automatica Sinica, 2000, 26(3):289-295 http://www.aas.net.cn/CN/abstract/abstract16059.shtml
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  3212
  • HTML全文浏览量:  257
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 录用日期:  2016-11-17
  • 刊出日期:  2018-01-20

目录

    /

    返回文章
    返回