2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用

高月 宿翀 李宏光

高月, 宿翀, 李宏光. 一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用. 自动化学报, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045
引用本文: 高月, 宿翀, 李宏光. 一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用. 自动化学报, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045
GAO Yue, SU Chong, LI Hong-Guang. A Kind of Deep Belief Networks Based on Nonlinear Features Extraction with Application to PM2.5 Concentration Prediction and Diagnosis. ACTA AUTOMATICA SINICA, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045
Citation: GAO Yue, SU Chong, LI Hong-Guang. A Kind of Deep Belief Networks Based on Nonlinear Features Extraction with Application to PM2.5 Concentration Prediction and Diagnosis. ACTA AUTOMATICA SINICA, 2018, 44(2): 318-329. doi: 10.16383/j.aas.2018.c160045

一类基于非线性PCA和深度置信网络的混合分类器及其在PM2.5浓度预测和影响因素诊断中的应用

doi: 10.16383/j.aas.2018.c160045
基金项目: 

国家自然科学基金 61603023

中国科学院复杂系统管理与控制国家重点实验室开放课题 20150103

北京市优秀人才资助项目 2015000020124G041

详细信息
    作者简介:

    高月  北京化工大学信息学院硕士研究生.主要研究方向为智能决策.E-mail:18810255106@163.com

    李宏光  北京化工大学信息学院教授.主要研究方向为化工过程的建模、控制和优化.E-mail:lihg@mail.buct.edu.cn

    通讯作者:

    宿翀  北京化工大学信息学院副教授.主要研究方向为人工智能, 情感计算和智能医疗.本文通信作者.E-mail:suchong@mail.buct.edu.cn

A Kind of Deep Belief Networks Based on Nonlinear Features Extraction with Application to PM2.5 Concentration Prediction and Diagnosis

Funds: 

National Natural Science Foundation of China 61603023

the Open Research Project under Grant from the SKLMCCS 20150103

Beijing Outstanding Talent Training Project 2015000020124G041

More Information
    Author Bio:

     Master student in Beijing University of Chemical Technology. Her main research interest is intelligent decision making

     Professor in Beijing University of Chemical Technology. His research interest covers modeling, control and optimization of chemical process as well as computer based intelligent control for industrial plants

    Corresponding author: SU Chong  Associate professor in Beijing University of Chemical Technology. His research interest covers intelligent applications, affect computing and smart medicine. Corresponding author of this paper
  • 摘要: 传统的深度置信网络(Deep brief networks,DBN)在建立高维数据分类模型时,往往存在网络负荷大,运算复杂度高等问题.本文首先基于非线性PCA(NPCA)对高维样本数据进行降维,然后以提取到的非线性特征作为DBN的网络输入,构建了一类含非线性特征提取预处理机制的DBN分类器.并从信息熵理论的角度出发,证明了所提改进DBN分类器在网络结构和算法复杂度方面的优势.通过一个PM2.5浓度预测与影响因素诊断实例,验证了所提改进DBN在一类分类和影响因素诊断问题中的应用,并与传统的分类器进行对比,显示了所提方法在建模精度及收敛速度上的优势.
    1)  本文责任编委 刘艳军
  • 图  1  三层输入训练神经网络结构图

    Fig.  1  An input training neural network structure with three layers

    图  2  深度置信网的结构

    Fig.  2  The structure of DBN

    图  3  NPCA-DBN模型分类与诊断结构图

    Fig.  3  The classification and diagnosis model with NPCA-DBN

    图  4  PM2.5预测诊断流程图

    Fig.  4  The flow chart of PM2.5 concentration$'$s prediction and diagnosis

    图  5  不同结构预测的平均相对误差

    Fig.  5  The classification and diagnosis model with NPCA-DBN

    图  6  华电二区的预测效果对比图

    Fig.  6  The comparison in the second area of Huadian with different structures

    图  7  不同结构预测的平均相对误差

    Fig.  7  The MRE of different structures

    图  8  华电二区超限数据贡献图

    Fig.  8  The contribution chart of the overrun data in the second area of Huadian

    表  1  网络结构对比

    Table  1  The comparison of the network structure

    模型 结构 隐含层节点数 总节点数 算法总空间复杂度
    NPCA-DBN (6-10-10) + (6-10-6-6-1) 32 55 $6\times 10\times 10+6\times 10\times 6\times 6\times 1$
    DBN 10-12-10-10-1 32 43 $10\times 12\times 10\times 10$
    下载: 导出CSV

    表  2  建模精度与收敛速度对比

    Table  2  The comparison of the network structure

    监测点 指标 NPCA-DBN NPCA-ANN NPCA-SVM NPCA-PLS DBN ANN SVM PLS
    地表 MRE ($\times10^{-2}$) 13.32 22.21 13.14 26.82 17.92 23.40 12.19 24.54
    水厂 训练时间(s) 44 16 180 46 89 33 349 94
    华电 MRE ($\times10^{-2}$) 14.57 25.15 13.04 29.48 17.01 24.16 10.22 27.16
    二区 训练时间(s) 37 12 211 49 90 38 401 103
    胶片 MRE ($\times10^{-2}$) 10.51 26.49 11.09 33.16 12.77 23.32 12.73 30.06
    训练时间(s) 42 16 198 57 108 42 399 108
    下载: 导出CSV

    表  3  PM2.5浓度级别

    Table  3  The PM2.5 concentration level

    浓度范围(${\rm \mu g/m^3}$) 级别 优良级别
    0$\, \sim\, $50 1级
    50$\, \sim\, $100 2级
    101$\, \sim\, $150 3级 轻度污染
    151$\, \sim\, $200 4级 中度污染
    201$\, \sim\, $ 5级 重度污染
    下载: 导出CSV
  • [1] Saki F, Kehtarnavaz N. Online frame-based clustering with unknown number of clusters. Pattern Recognition, 2016, 57:70-83 doi: 10.1016/j.patcog.2016.03.010
    [2] Li H, Chung F L, Wang S T. A SVM based classification method for homogeneous data. Applied Soft Computing, 2015, 36:228-235 doi: 10.1016/j.asoc.2015.07.027
    [3] Embrechts M J, Rossi F, Schleif F M, Lee J A. Advances in artificial neural networks, machine learning, and computational intelligence (ESANN 2013). Neurocomputing, 2014, 141:1-2 doi: 10.1016/j.neucom.2014.03.002
    [4] Zhang Y P, Li X, Zhang Z F, Wu F, Zhao L M. Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing, 2015, 168:454-463 doi: 10.1016/j.neucom.2015.05.082
    [5] Shang C, Yang F, Huang D X, Lyu W X. Data-driven soft sensor development based on deep learning technique. Journal of Process Control, 2014, 24 (3):223-233 doi: 10.1016/j.jprocont.2014.01.012
    [6] 高莹莹, 朱维彬.深层神经网络中间层可见化建模.自动化学报, 2015, 41 (9):1627-1637 http://www.aas.net.cn/CN/abstract/abstract18736.shtml

    Gao Ying-Ying, Zhu Wei-Bin. Deep neural networks with visible intermediate layers. Acta Automatica Sinica, 2015, 41 (9):1627-1637 http://www.aas.net.cn/CN/abstract/abstract18736.shtml
    [7] 丁科, 谭营. GPU通用计算及其在计算智能领域的应用.智能系统学报, 2015, 10 (1):1-11 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=znxt201501001&dbname=CJFD&dbcode=CJFQ

    Ding Ke, Tan Ying. A review on general purpose computing on GPUs and its applications in computational intelligence. CAAI Transactions on Intelligent Systems, 2015, 10 (1):1-11 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=znxt201501001&dbname=CJFD&dbcode=CJFQ
    [8] Shen F R, Chao J, Zhao J X. Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing, 2015, 167:243-253 doi: 10.1016/j.neucom.2015.04.071
    [9] Huang S, Yang D, Ge Y X, Zhang X H. Combined supervised information with PCA via discriminative component selection. Information Processing Letters, 2015, 115 (11):812-816 doi: 10.1016/j.ipl.2015.06.010
    [10] 甘俊英, 李春芝.基于小波变换、二维主元分析与独立元分析的人脸识别方法.模式识别与人工智能, 2007, 20 (3):377-381 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb200703013&dbname=CJFD&dbcode=CJFQ

    Gan Jun-Ying, Li Chun-Zhi. Face Recognition based on wavelet transform, two-dimensional principal component analysis and independent component analysis. Pattern Recognition and Artificial Intelligence, 2007, 20 (3):377-381 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=mssb200703013&dbname=CJFD&dbcode=CJFQ
    [11] 汤健, 柴天佑, 余文, 赵立杰.在线KPLS建模方法及在磨机负荷参数集成建模中的应用.自动化学报, 2013, 39 (5):471-486 http://www.aas.net.cn/CN/abstract/abstract17934.shtml

    Tang Jian, Chai Tian-You, Yu Wen, Zhao Li-Jie. On-line KPLS algorithm with application to ensemble modeling parameters of mill load. Acta Automatica Sinica, 2013, 39 (5):471-486 http://www.aas.net.cn/CN/abstract/abstract17934.shtml
    [12] Cobourn W G. An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations. Atmospheric Environment, 2010, 44 (25):3015-3023 doi: 10.1016/j.atmosenv.2010.05.009
    [13] Voukantsis D, Karatzas K, Kukkonen J, Räsänen T, Karppinen A, Kolehmainen M. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Science of the Total Environment, 2011, 409 (7):1266-1276 doi: 10.1016/j.scitotenv.2010.12.039
    [14] Xia D H, Jiang B F, Xie Y L. Modeling and analysis of PM2.5 generation for key factors identification in China. Atmospheric Environment, 2016, 134:208-216 doi: 10.1016/j.atmosenv.2016.03.055
    [15] De Ridder K, Kumar U, Lauwaet D, Blyth L, Lefebvre W. Kalman filter-based air quality forecast adjustment. Atmospheric Environment, 2012, 50:381-384 doi: 10.1016/j.atmosenv.2012.01.032
    [16] de Gennaro G, Trizio L, Gilio A D, Pey J, Pérez N, Cusack M, Alastuey A, Querol X. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Science of The Total Environment, 2013, 463-464:875-883 doi: 10.1016/j.scitotenv.2013.06.093
    [17] Feng X, Li Q, Zhu Y J, Hou J X, Jin L Y, Wang J J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 2015, 107:118-128 doi: 10.1016/j.atmosenv.2015.02.030
    [18] Tan S F, Mayrovouniotis M L. Reducing data dimensionality through optimizing neural network inputs. AIChE Journal, 1995, 41 (6):1471-1480 doi: 10.1002/(ISSN)1547-5905
    [19] Hinton G E, Osindero S, The Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18 (7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [20] 乔俊飞, 潘广源, 韩红桂.一种连续型深度信念网的设计与应用.自动化学报, 2015, 41 (12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml

    Qiao Jun-Fei, Pan Guang-Yuan, Han Hong-Gui. Design and application of continuous deep belief network. Acta Automatica Sinica, 2015, 41 (12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml
    [21] 李尔国, 俞金寿.一种基于输入训练神经网络的非线性PCA故障诊断方法.控制与决策, 2003, 18 (2):229-232 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kzyc200302023&dbname=CJFD&dbcode=CJFQ

    Li Er-Guo, Yu Jin-Shou. An input-training neural network based nonlinear principal component analysis approach for fault diagnosis. Control and Decision, 2003, 18 (2):229-232 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kzyc200302023&dbname=CJFD&dbcode=CJFQ
    [22] He R, Hu B G, Yuan X T, Zheng W S. Principal component analysis based on non-parametric maximum entropy. Neurocomputing, 2010, 73 (10-12):1840-1852 doi: 10.1016/j.neucom.2009.12.032
    [23] 武妍, 张立明.神经网络的泛化能力与结构优化算法研究.计算机应用研究, 2002, 19 (6):21-25, 84 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsyj200206006&dbname=CJFD&dbcode=CJFQ

    Wu Yan, Zhang Li-Ming. A survey of research work on neural network generalization and structure optimization algorithms. Application Research of Computers, 2002, 19 (6):21-25, 84 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsyj200206006&dbname=CJFD&dbcode=CJFQ
    [24] Deco G, Finnoff W, Zimmermann H G. Unsupervised mutual information criterion for elimination of overtraining in supervised multilayer networks. Neural Computation, 1995, 7 (1):86-107 doi: 10.1162/neco.1995.7.1.86
    [25] 吴新根, 吕维雪.一种基于信息熵的神经网络规则表示.计算机工程, 1996, 22 (5):46-51 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjc605.010&dbname=CJFD&dbcode=CJFQ

    Wu Xin-Gen, Lv Wei-Xue. A neural network rule expression based on information entropy. Computer Engineering, 1996, 22 (5):46-51 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jsjc605.010&dbname=CJFD&dbcode=CJFQ
    [26] Sánchez D, Melin P, Castillo O. Optimization of modular granular neural networks using a hierarchical genetic algorithm based on the database complexity applied to human recognition. Information Sciences, 2015, 309:73-101 doi: 10.1016/j.ins.2015.02.020
    [27] Wang L T, Wei Z, Yang J, Zhang Y, Zhang F F, Su J, et al. The 2013 severe haze over southern Hebei, China:model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics Discussions, 2013, 13 (11):28395-28451 doi: 10.5194/acpd-13-28395-2013
    [28] Peng K X, Zhang K, Li G. Online contribution rate based fault diagnosis for nonlinear industrial processes. Acta Automatica Sinica, 2014, 40 (3):423-430 doi: 10.1016/S1874-1029(14)60005-7
    [29] Yao L, Yang L X, Yuan Q, Yan C, Dong C, Meng C P, et al. Sources apportionment of PM2.5 in a background site in the North China Plain. Science of The Total Environment, 2016, 541:590-598 doi: 10.1016/j.scitotenv.2015.09.123
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2163
  • HTML全文浏览量:  268
  • PDF下载量:  806
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 录用日期:  2016-12-18
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回