2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory

Bao Gang Chen Yuanyuan Wen Siyu Lai Zhicen

鲍刚, 陈媛媛, 温思雨, 赖陟岑. 忆阻递归神经网络稳定性分析及其在联想记忆中的应用. 自动化学报, 2017, 43(12): 2244-2252. doi: 10.16383/j.aas.2017.e170103
引用本文: 鲍刚, 陈媛媛, 温思雨, 赖陟岑. 忆阻递归神经网络稳定性分析及其在联想记忆中的应用. 自动化学报, 2017, 43(12): 2244-2252. doi: 10.16383/j.aas.2017.e170103
Bao Gang, Chen Yuanyuan, Wen Siyu, Lai Zhicen. Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory. ACTA AUTOMATICA SINICA, 2017, 43(12): 2244-2252. doi: 10.16383/j.aas.2017.e170103
Citation: Bao Gang, Chen Yuanyuan, Wen Siyu, Lai Zhicen. Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory. ACTA AUTOMATICA SINICA, 2017, 43(12): 2244-2252. doi: 10.16383/j.aas.2017.e170103

忆阻递归神经网络稳定性分析及其在联想记忆中的应用

doi: 10.16383/j.aas.2017.e170103
基金项目: 

Hubei Science and Technology Support Program 2015BAA106

Hubei Key Laboratory of Cascaded Hydropower Stations Operation and Control Program 2013KJX12

China Three Gorges University Science Foundation KJ2013B020

the National Natural Science Foundation of China 61125303

the Program for Changjiang Scholars and Innovative Research Team in University of China IRT1245

the Program for Science and Technology in Wuhan, China 2014010101010004

Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory

Funds: 

Hubei Science and Technology Support Program 2015BAA106

Hubei Key Laboratory of Cascaded Hydropower Stations Operation and Control Program 2013KJX12

China Three Gorges University Science Foundation KJ2013B020

the National Natural Science Foundation of China 61125303

the Program for Changjiang Scholars and Innovative Research Team in University of China IRT1245

the Program for Science and Technology in Wuhan, China 2014010101010004

More Information
    Author Bio:

    Yuanyuan Chen received the B.S.degree from the College of Science and Technology, China Three Gorges University in 2016.Now she is a postgraduate student and pursuing for M.S.degree at the School of Electrical Engineering and New Energies, China Three Gorges University.Her current research interests include microgrid optimization scheduling and stability analysis.E-mail:pretty.yuanzi@qq.com

    Siyu Wen received the B.S.degree in water resources and hydropower engineering from the College of Science and Technology, China Three Gorges University in 2016.Now, she is currently working toward the M.S.degree at the School of Electrical Engineering and New Energies, China Three Gorges University.Her current research interests include hydropower dispatching and unit commitment optimization.E-mail:215341796@qq.com

    Zhicen Lai received the B.S.degree in electrical engineering and its automation (focus on transmission line), China Three Gorges University in 2016.She is currently working toward the M.S.degree at the School of Electrical Engineering and New Energies, China Three Gorges University, Yichang, China.Her current research interests include microgrid control and stability analysis.E-mail:2512991452@qq.com

    Corresponding author: Gang Bao received the B.S.degree in mathematics from Hubei Normal University, Huangshi, China, the M.S.degree in applied mathematics from Beijing University of Technology, Beijing, China, in 2000 and 2004, the Ph.D.degree from the Department of Control Science and Engineering, Huazhong University of Science and Technology, respectively.His research interests include memristor, stability analysis of nonlinear systems, and association memory.Corresponding author of this paper.E-mail:hustgangbao@ctgu.edu.cn
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    Recommended by Associate Editor Zhanshan Wang
  • Fig.  1  The curve of $(v(t), i(t))$ under voltage sources with different amplitudes. The applied voltage source is $v(t)=v_0\sin(\omega t)$, $v_0=1.5, 1, 0.15, 0.01$ V, $\omega=2\pi$ rad/s and the other parameters are $s(t_0)=0.1$, $t_0=0$ s, $R_{\rm on}=100 \Omega $, $r=160$, $D=10^{-6} \mbox{cm}$, $\mu_V=10^{-10} \mbox{cm}^2/\mbox{sV}$. From four subplots, there is a threshold voltage existing for one memristor.

    Fig.  2  Transient behaviors of $x_{1}(t)$ of MRNN (26).

    Fig.  3  Transient behaviors of $x_{2}(t)$ of MRNN (26).

    Fig.  4  Phase plot of $x_{1}(t)$ and $x_{2}(t)$ of MRNN (26).

    Fig.  5  Transient behaviors of $x_{1}(t)$ and $x_{2}(t)$ of MRNN (27)

    Fig.  6  Three letters "I, L, U" and number "7" being presented by gray map.

  • [1] T. Mareda, L. Gaudard, and F. Romerio, "A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 260-272, Apr. 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdhb201702013&dbname=CJFD&dbcode=CJFQ
    [2] Y. Zhao, Y. Li, F. Y. Zhou, Z. K. Zhou, and Y. Q. Chen, "An iterative learning approach to identify fractional order KiBaM model, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322-331, Apr. 2017. http://ieeexplore.ieee.org/document/7833249
    [3] L. Li, Y. L. Lin, N. N. Zheng, and F. Y. Wang, "Parallel learning: a perspective and a framework, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 389-395, Jul. 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdhb201703001&dbname=CJFD&dbcode=CJFQ
    [4] M. Yue, L. J. Wang, and T. Ma, "Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 498-506, Jul. 2017. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201703009
    [5] W. Y. Zhang, H. G. Zhang, J. H. Liu, K. Li, D. S. Yang, and H. Tian, "Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 520-525, Jul. 2017. http://ieeexplore.ieee.org/document/7974898/
    [6] D. Shen and Y. Xu, "Iterative learning control for discrete-time stochastic systems with quantized information, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 59-67, Jan. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201601007
    [7] Z. Y. Guo, S. F. Yang, and J. Wang, "Global synchronization of stochastically disturbed memristive neurodynamics via discontinuous control laws, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 121-131, Apr. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201602002
    [8] X. W. Feng, X. Y. Kong, and H. G. Ma, "Coupled cross-correlation neural network algorithm for principal singular triplet extraction of a cross-covariance matrix, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 147-156, Apr. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201602005
    [9] S. M. Chen, X. L. Chen, Z. K. Pei, X. X. Zhang, and H. J. Fang, "Distributed filtering algorithm based on tunable weights under untrustworthy dynamics, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 225-232, Apr. 2016. http://ieeexplore.ieee.org/document/7451110/
    [10] L. Li, Y. S. Lv, and F. Y. Wang, "Traffic signal timing via deep reinforcement learning, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 247-254, Jul. 2016. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZDHB201603003.htm
    [11] F. Y. Wang, X. Wang, L. X. Li, and L. Li, "Steps toward parallel intelligence, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 345-348, Oct. 2016. http://ieeexplore.ieee.org/document/7589480/
    [12] T. Giitsidis and G. Ch. Sirakoulis, "Modeling passengers boarding in aircraft using cellular automata, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 365-384, Oct. 2016. http://ieeexplore.ieee.org/document/7589483
    [13] B. B. Alagoz, "A note on robust stability analysis of fractional order interval systems by minimum argument vertex and edge polynomials, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 411-421, Oct. 2016.
    [14] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities, " Proc. Natl. Acad. Sci. USA, vol. 79, no. 8, pp. 2554-2558, Apr. 1982. http://europepmc.org/abstract/MED/6953413
    [15] L. Chua, "Memristor-the missing circuit element, " IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg1/ref1&dbid=16&doi=10.1139%2Fcjp-2013-0456&key=10.1109%2FTCT.1971.1083337
    [16] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found, " Nature, vol. 453, no. 7191, pp. 80-83, May 2008.
    [17] Y. V. Pershin and M. Di Ventra, "Experimental demonstration of associative memory with memristive neural networks, " Neural Netw. , vol. 23, no. 7, pp. 881-886, Sep. 2010. http://europepmc.org/abstract/MED/20605401
    [18] F. Corinto, A. Ascoli, and M. Gilli, "Nonlinear dynamics of memristor oscillators, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 58, no. 6, pp. 1323-1336, Jun. 2011. http://ieeexplore.ieee.org/document/5704223/
    [19] O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghiam, S. F. Al-Sarawi, and D. Abbott, "The fourth element: characteristics, modelling and electromagnetic theory of the memristor, " Proc. Roy. Soc. A-Math. Phy. Eng. Sci. , vol. 466, no. 2120, pp. 2175-2202, Mar. 2010. http://www.jstor.org/stable/25706341
    [20] Y. Ho, G. M. Huang, and P. Li, "Dynamical properties and design analysis for nonvolatile memristor memories, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 58, no. 4, pp. 724-736, Apr. 2011. http://ieeexplore.ieee.org/document/5604689/
    [21] L. Chua, "Resistance switching memories are memristors, " Appl. Phys. A, vol. 102, no. 4, pp. 765-783, Mar. 2011. doi: 10.1007/s00339-011-6264-9
    [22] G. Snider, "Memristors as synapses in a neural computing architecture, " in Memristor and Memristor Syst. Symp. , Berkeley, CA, Nov. 2008.
    [23] H. Kim, M. P. Sah, C. J. Yang, T. Roska, and L. O. Chua, "Neural synaptic weighting with a pulse-based memristor circuit, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 59, no. 1, pp. 148-158, Jan. 2012. http://ieeexplore.ieee.org/document/5976989/
    [24] M. P. Sah, H. Kim, and L. O. Chua, "Brains are made of memristors, " IEEE Circuits Syst. Mag. , vol. 14, no. 1, pp. 12-36, Feb. 2014. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6744690
    [25] F. Z. Wang, N. Helian, S. N. Wu, X. Yang, Y. K. Guo, G. Lim, and M. M. Rashid, "Delayed switching applied to memristor neural networks, " J. Appl. Phys. , vol. 111, no. 7, Article ID, 07E317, Apr. 2012. doi: 10.1063/1.3672409
    [26] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, "Neural learning circuits utilizing nano-crystalline silicon transistors and memristors, " IEEE Trans. Neural Netw. Learn. Syst. , vol. 23, no. 4, pp. 565-573, Apr. 2012. http://www.ncbi.nlm.nih.gov/pubmed/24805040
    [27] X. F. Hu, S. K. Duan, L. D. Wang, and X. F. Liao, "Memristive crossbar array with applications in image processing, " Sci. China Inform. Sci., vol. 55, no. 2, pp. 461-472, 2012. doi: 10.1007/s11432-011-4410-9
    [28] M. Itoh and L. Chua, "Memristor cellular automata and memristor discrete-time cellular neural networks, " Int. J. Bifurcation Chaos, vol. 19, no. 11, pp. 3605-3656, Mar. 2009. doi: 10.1142/S0218127409025031
    [29] S. P. Wen, Z. G. Zeng, and T. W. Huang, "Associative learning of integrate-and-fire neurons with memristor-based synapses, " Neural Proc. Lett. , vol. 38, no. 1, pp. 69-80, Aug. 2013. doi: 10.1007/s11063-012-9263-8
    [30] A. L. Wu, S. P. Wen, and Z. G. Zeng, "Synchronization control of a class of memristor-based recurrent neural networks, " Inf. Sci. , vol. 183, no. 1, pp. 106-116, Jan. 2012. http://dl.acm.org/citation.cfm?id=2051433
    [31] S. T. Qin, J. Wang, and X. P. Xue, "Convergence and attractivity of memristor-based cellular neural networks with time delays, " Neural Netw. , vol. 63, pp. 223-233, Mar. 2015. http://www.sciencedirect.com/science/article/pii/S0893608014002706
    [32] Z. Y. Guo, J. Wang, and Z. Yan, "Attractivity analysis of memristor-based cellular neural networks with time-varying delays, " IEEE Trans. Neural Netw. Learn. Syst. , vol. 25, no. 4, pp. 704-717, Apr. 2014. http://ieeexplore.ieee.org/document/6603322/
    [33] S. P. Wen, T. W. Huang, Z. G. Zeng, Y. R. Chen, and P. Li, "Circuit design and exponential stabilization of memristive neural networks, " Neural Netw. , vol. 63, pp. 48-56, Mar. 2015. http://dl.acm.org/citation.cfm?id=2947803
    [34] G. D. Zhang, Y. Shen, Q. Yin, and J. W. Sun, "Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays, " Inf. Sci. , vol. 232, pp. 386-396, May 2013. http://dl.acm.org/citation.cfm?id=2444088
    [35] Z. Y. Guo, J. Wang, and Z. Yan, "Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays, " Neural Netw. , vol. 48, pp. 158-172, Dec. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24055958
    [36] X. B. Nie, W. X. Zheng, and J. D. Cao, "Coexistence and localµ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays, " Neural Netw. , vol. 84, pp. 172-180, Dec. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27794268
    [37] S. B. Ding, Z. S. Wang, and H. G. Zhang, "Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, " IEEE Trans. Neural Netw. Learn. Syst., pp.(99): 1-13, 2016, doi: 10.1109/TNNLS.2016.2631624.
    [38] A. L. Wu, Z. G. Zeng, X. S. Zhu, and J. E. Zhang, "Exponential synchronization of memristor-based recurrent neural networks with time delays, " Neurocomputing, vol. 74, no. 17, pp. 3043-3050, 2011. doi: 10.1016/j.neucom.2011.04.016
    [39] S. B. Ding, Z. S. Wang, N. N. Rong, and H. G. Zhang, "Exponential stabilization of memristive neural networks via saturating sampled-data control, " IEEE Trans. Cybern. , vol. 47, no, 10, pp. 3027-3039, Jun. 2017. http://ieeexplore.ieee.org/document/7955063/
    [40] A. N. Michel and D. L. Gray, "Analysis and synthesis of neural networks with lower block triangular interconnecting structure, " IEEE Trans. Circuits Syst. , vol. 37, no. 10, pp. 1267-1283, Oct. 1990.
    [41] G. Yen and A. N. Michel, "A learning and forgetting algorithm in associative memories: the eigenstructure method, " IEEE Trans. Circuits Syst. Ⅱ: Anal. Digit. Signal Proc. , vol. 39, no. 4, pp. 212-225, Apr. 1992. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=136571
    [42] G. Seiler, A. J. Schuler, and J. A. Nossek, "Design of robust cellular neural networks, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 40, no. 5, pp. 358-364, May 1993. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=232580
    [43] Z. G. Zeng and J. Wang, "Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays, " Neural Comput. , vol. 19, no. 8, pp. 2149-2182, Aug. 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6796141
    [44] M. Brucoli, L. Carnimeo, and G. Grassi, "Discrete-time cellular neural networks for associative memories with learning and forgetting capabilities, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 42, no. 7, pp. 396-399, Jul. 1995. http://www.ams.org/mathscinet-getitem?mr=1351873
    [45] A. C. B. Delbem, L. G. Correa, and L. Zhao, "Design of associative memories using cellular neural networks, " Neurocomputing, vol. 72, no. 10-12, pp. 2180-2188, Jan. 2009. http://dl.acm.org/citation.cfm?id=1539067.1539948&coll=DL&dl=GUIDE&CFID=358008649&CFTOKEN=38409485
    [46] G. Grassi, "On discrete-time cellular neural networks for associative memories, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 48, no. 1, pp. 107-111, Jan. 2001. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=903193
    [47] A. Ascoli, R. Tetzlaff, L. O. Chua, J. P. Strachan, and R. S. Williams, "History erase effect in a non-volatile memristor, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 63, no. 3, pp. 389-400, Mar. 2016. http://ieeexplore.ieee.org/document/7444186/
    [48] Z. Y. Guo, J. Wang, and Z. Yan, "A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria, " Neural Netw. , vol. 54, pp. 112-122, Jun. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24699443
    [49] Z. G. Zeng, J. Wang, and X. X. Liao, "Global exponential stability of a general class of recurrent neural networks with time-varying delays, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 50, no. 10, pp. 1353-1358, Oct. 2003. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1236548
    [50] Z. G. Zeng, T. W. Huang, and W. X. Zheng, "Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function, " IEEE Trans. Neural Netw. , vol. 21, no. 8, pp. 1371-1377, Aug. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20624705
    [51] Z. G. Zeng, J. Wang, and X. X. Liao, "Stability analysis of delayed cellular neural networks described using cloning templates, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 51, no. 11, pp. 2313-2324, Nov. 2004. http://ieeexplore.ieee.org/document/1356162
    [52] Z. J. Lu and D. R. Liu, "A new synthesis procedure for a class of cellular neural networks with space-invariant cloning template, " IEEE Trans. Circuits Syst. Ⅱ: Anal. Digit. Signal Proc. , vol. 45, no. 12, pp. 1601-1605, Dec. 1998. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=746682
  • 加载中
图(6)
计量
  • 文章访问数:  2254
  • HTML全文浏览量:  369
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-24
  • 录用日期:  2017-10-12
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回