Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory
-
Abstract: Memristor is a nonlinear resistor with variable resistance. This paper discusses dynamic properties of memristor and recurrent neural network (RNN) with memristors as connection weights. Firstly, it establishes that there exists a threshold voltage for memristor. Secondly, it presents a model for memristive recurrent neural network (MRNN) which has variable and bounded coe-cients, and analyzes stability of memristive neural network by some maths tools. Thirdly, it gives a synthesis algorithm for associative memory based on memristive recurrent neural network. At last, three examples verify our results.
-
Key words:
- Associative memory /
- memristor /
- memristive recurrent neural network (MRNN) /
- stability
-
Fig. 1 The curve of $(v(t), i(t))$ under voltage sources with different amplitudes. The applied voltage source is $v(t)=v_0\sin(\omega t)$, $v_0=1.5, 1, 0.15, 0.01$ V, $\omega=2\pi$ rad/s and the other parameters are $s(t_0)=0.1$, $t_0=0$ s, $R_{\rm on}=100 \Omega $, $r=160$, $D=10^{-6} \mbox{cm}$, $\mu_V=10^{-10} \mbox{cm}^2/\mbox{sV}$. From four subplots, there is a threshold voltage existing for one memristor.
-
[1] T. Mareda, L. Gaudard, and F. Romerio, "A parametric genetic algorithm approach to assess complementary options of large scale windsolar coupling, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 260-272, Apr. 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdhb201702013&dbname=CJFD&dbcode=CJFQ [2] Y. Zhao, Y. Li, F. Y. Zhou, Z. K. Zhou, and Y. Q. Chen, "An iterative learning approach to identify fractional order KiBaM model, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322-331, Apr. 2017. http://ieeexplore.ieee.org/document/7833249 [3] L. Li, Y. L. Lin, N. N. Zheng, and F. Y. Wang, "Parallel learning: a perspective and a framework, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 389-395, Jul. 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdhb201703001&dbname=CJFD&dbcode=CJFQ [4] M. Yue, L. J. Wang, and T. Ma, "Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 498-506, Jul. 2017. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201703009 [5] W. Y. Zhang, H. G. Zhang, J. H. Liu, K. Li, D. S. Yang, and H. Tian, "Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 520-525, Jul. 2017. http://ieeexplore.ieee.org/document/7974898/ [6] D. Shen and Y. Xu, "Iterative learning control for discrete-time stochastic systems with quantized information, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 1, pp. 59-67, Jan. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201601007 [7] Z. Y. Guo, S. F. Yang, and J. Wang, "Global synchronization of stochastically disturbed memristive neurodynamics via discontinuous control laws, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 121-131, Apr. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201602002 [8] X. W. Feng, X. Y. Kong, and H. G. Ma, "Coupled cross-correlation neural network algorithm for principal singular triplet extraction of a cross-covariance matrix, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 147-156, Apr. 2016. http://d.wanfangdata.com.cn/Periodical/zdhxb-ywb201602005 [9] S. M. Chen, X. L. Chen, Z. K. Pei, X. X. Zhang, and H. J. Fang, "Distributed filtering algorithm based on tunable weights under untrustworthy dynamics, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 2, pp. 225-232, Apr. 2016. http://ieeexplore.ieee.org/document/7451110/ [10] L. Li, Y. S. Lv, and F. Y. Wang, "Traffic signal timing via deep reinforcement learning, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 247-254, Jul. 2016. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZDHB201603003.htm [11] F. Y. Wang, X. Wang, L. X. Li, and L. Li, "Steps toward parallel intelligence, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 345-348, Oct. 2016. http://ieeexplore.ieee.org/document/7589480/ [12] T. Giitsidis and G. Ch. Sirakoulis, "Modeling passengers boarding in aircraft using cellular automata, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 365-384, Oct. 2016. http://ieeexplore.ieee.org/document/7589483 [13] B. B. Alagoz, "A note on robust stability analysis of fractional order interval systems by minimum argument vertex and edge polynomials, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 411-421, Oct. 2016. [14] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities, " Proc. Natl. Acad. Sci. USA, vol. 79, no. 8, pp. 2554-2558, Apr. 1982. http://europepmc.org/abstract/MED/6953413 [15] L. Chua, "Memristor-the missing circuit element, " IEEE Trans. Circuit Theory, vol. 18, no. 5, pp. 507-519, Sep. 1971. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg1/ref1&dbid=16&doi=10.1139%2Fcjp-2013-0456&key=10.1109%2FTCT.1971.1083337 [16] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found, " Nature, vol. 453, no. 7191, pp. 80-83, May 2008. [17] Y. V. Pershin and M. Di Ventra, "Experimental demonstration of associative memory with memristive neural networks, " Neural Netw. , vol. 23, no. 7, pp. 881-886, Sep. 2010. http://europepmc.org/abstract/MED/20605401 [18] F. Corinto, A. Ascoli, and M. Gilli, "Nonlinear dynamics of memristor oscillators, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 58, no. 6, pp. 1323-1336, Jun. 2011. http://ieeexplore.ieee.org/document/5704223/ [19] O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghiam, S. F. Al-Sarawi, and D. Abbott, "The fourth element: characteristics, modelling and electromagnetic theory of the memristor, " Proc. Roy. Soc. A-Math. Phy. Eng. Sci. , vol. 466, no. 2120, pp. 2175-2202, Mar. 2010. http://www.jstor.org/stable/25706341 [20] Y. Ho, G. M. Huang, and P. Li, "Dynamical properties and design analysis for nonvolatile memristor memories, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 58, no. 4, pp. 724-736, Apr. 2011. http://ieeexplore.ieee.org/document/5604689/ [21] L. Chua, "Resistance switching memories are memristors, " Appl. Phys. A, vol. 102, no. 4, pp. 765-783, Mar. 2011. doi: 10.1007/s00339-011-6264-9 [22] G. Snider, "Memristors as synapses in a neural computing architecture, " in Memristor and Memristor Syst. Symp. , Berkeley, CA, Nov. 2008. [23] H. Kim, M. P. Sah, C. J. Yang, T. Roska, and L. O. Chua, "Neural synaptic weighting with a pulse-based memristor circuit, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 59, no. 1, pp. 148-158, Jan. 2012. http://ieeexplore.ieee.org/document/5976989/ [24] M. P. Sah, H. Kim, and L. O. Chua, "Brains are made of memristors, " IEEE Circuits Syst. Mag. , vol. 14, no. 1, pp. 12-36, Feb. 2014. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6744690 [25] F. Z. Wang, N. Helian, S. N. Wu, X. Yang, Y. K. Guo, G. Lim, and M. M. Rashid, "Delayed switching applied to memristor neural networks, " J. Appl. Phys. , vol. 111, no. 7, Article ID, 07E317, Apr. 2012. doi: 10.1063/1.3672409 [26] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, "Neural learning circuits utilizing nano-crystalline silicon transistors and memristors, " IEEE Trans. Neural Netw. Learn. Syst. , vol. 23, no. 4, pp. 565-573, Apr. 2012. http://www.ncbi.nlm.nih.gov/pubmed/24805040 [27] X. F. Hu, S. K. Duan, L. D. Wang, and X. F. Liao, "Memristive crossbar array with applications in image processing, " Sci. China Inform. Sci., vol. 55, no. 2, pp. 461-472, 2012. doi: 10.1007/s11432-011-4410-9 [28] M. Itoh and L. Chua, "Memristor cellular automata and memristor discrete-time cellular neural networks, " Int. J. Bifurcation Chaos, vol. 19, no. 11, pp. 3605-3656, Mar. 2009. doi: 10.1142/S0218127409025031 [29] S. P. Wen, Z. G. Zeng, and T. W. Huang, "Associative learning of integrate-and-fire neurons with memristor-based synapses, " Neural Proc. Lett. , vol. 38, no. 1, pp. 69-80, Aug. 2013. doi: 10.1007/s11063-012-9263-8 [30] A. L. Wu, S. P. Wen, and Z. G. Zeng, "Synchronization control of a class of memristor-based recurrent neural networks, " Inf. Sci. , vol. 183, no. 1, pp. 106-116, Jan. 2012. http://dl.acm.org/citation.cfm?id=2051433 [31] S. T. Qin, J. Wang, and X. P. Xue, "Convergence and attractivity of memristor-based cellular neural networks with time delays, " Neural Netw. , vol. 63, pp. 223-233, Mar. 2015. http://www.sciencedirect.com/science/article/pii/S0893608014002706 [32] Z. Y. Guo, J. Wang, and Z. Yan, "Attractivity analysis of memristor-based cellular neural networks with time-varying delays, " IEEE Trans. Neural Netw. Learn. Syst. , vol. 25, no. 4, pp. 704-717, Apr. 2014. http://ieeexplore.ieee.org/document/6603322/ [33] S. P. Wen, T. W. Huang, Z. G. Zeng, Y. R. Chen, and P. Li, "Circuit design and exponential stabilization of memristive neural networks, " Neural Netw. , vol. 63, pp. 48-56, Mar. 2015. http://dl.acm.org/citation.cfm?id=2947803 [34] G. D. Zhang, Y. Shen, Q. Yin, and J. W. Sun, "Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays, " Inf. Sci. , vol. 232, pp. 386-396, May 2013. http://dl.acm.org/citation.cfm?id=2444088 [35] Z. Y. Guo, J. Wang, and Z. Yan, "Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays, " Neural Netw. , vol. 48, pp. 158-172, Dec. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24055958 [36] X. B. Nie, W. X. Zheng, and J. D. Cao, "Coexistence and localµ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays, " Neural Netw. , vol. 84, pp. 172-180, Dec. 2016. http://www.ncbi.nlm.nih.gov/pubmed/27794268 [37] S. B. Ding, Z. S. Wang, and H. G. Zhang, "Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case, " IEEE Trans. Neural Netw. Learn. Syst., pp.(99): 1-13, 2016, doi: 10.1109/TNNLS.2016.2631624. [38] A. L. Wu, Z. G. Zeng, X. S. Zhu, and J. E. Zhang, "Exponential synchronization of memristor-based recurrent neural networks with time delays, " Neurocomputing, vol. 74, no. 17, pp. 3043-3050, 2011. doi: 10.1016/j.neucom.2011.04.016 [39] S. B. Ding, Z. S. Wang, N. N. Rong, and H. G. Zhang, "Exponential stabilization of memristive neural networks via saturating sampled-data control, " IEEE Trans. Cybern. , vol. 47, no, 10, pp. 3027-3039, Jun. 2017. http://ieeexplore.ieee.org/document/7955063/ [40] A. N. Michel and D. L. Gray, "Analysis and synthesis of neural networks with lower block triangular interconnecting structure, " IEEE Trans. Circuits Syst. , vol. 37, no. 10, pp. 1267-1283, Oct. 1990. [41] G. Yen and A. N. Michel, "A learning and forgetting algorithm in associative memories: the eigenstructure method, " IEEE Trans. Circuits Syst. Ⅱ: Anal. Digit. Signal Proc. , vol. 39, no. 4, pp. 212-225, Apr. 1992. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=136571 [42] G. Seiler, A. J. Schuler, and J. A. Nossek, "Design of robust cellular neural networks, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 40, no. 5, pp. 358-364, May 1993. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=232580 [43] Z. G. Zeng and J. Wang, "Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays, " Neural Comput. , vol. 19, no. 8, pp. 2149-2182, Aug. 2007. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6796141 [44] M. Brucoli, L. Carnimeo, and G. Grassi, "Discrete-time cellular neural networks for associative memories with learning and forgetting capabilities, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 42, no. 7, pp. 396-399, Jul. 1995. http://www.ams.org/mathscinet-getitem?mr=1351873 [45] A. C. B. Delbem, L. G. Correa, and L. Zhao, "Design of associative memories using cellular neural networks, " Neurocomputing, vol. 72, no. 10-12, pp. 2180-2188, Jan. 2009. http://dl.acm.org/citation.cfm?id=1539067.1539948&coll=DL&dl=GUIDE&CFID=358008649&CFTOKEN=38409485 [46] G. Grassi, "On discrete-time cellular neural networks for associative memories, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 48, no. 1, pp. 107-111, Jan. 2001. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=903193 [47] A. Ascoli, R. Tetzlaff, L. O. Chua, J. P. Strachan, and R. S. Williams, "History erase effect in a non-volatile memristor, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 63, no. 3, pp. 389-400, Mar. 2016. http://ieeexplore.ieee.org/document/7444186/ [48] Z. Y. Guo, J. Wang, and Z. Yan, "A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria, " Neural Netw. , vol. 54, pp. 112-122, Jun. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24699443 [49] Z. G. Zeng, J. Wang, and X. X. Liao, "Global exponential stability of a general class of recurrent neural networks with time-varying delays, " IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl. , vol. 50, no. 10, pp. 1353-1358, Oct. 2003. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1236548 [50] Z. G. Zeng, T. W. Huang, and W. X. Zheng, "Multistability of recurrent neural networks with time-varying delays and the piecewise linear activation function, " IEEE Trans. Neural Netw. , vol. 21, no. 8, pp. 1371-1377, Aug. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20624705 [51] Z. G. Zeng, J. Wang, and X. X. Liao, "Stability analysis of delayed cellular neural networks described using cloning templates, " IEEE Trans. Circuits Syst. Ⅰ: Reg. Pap. , vol. 51, no. 11, pp. 2313-2324, Nov. 2004. http://ieeexplore.ieee.org/document/1356162 [52] Z. J. Lu and D. R. Liu, "A new synthesis procedure for a class of cellular neural networks with space-invariant cloning template, " IEEE Trans. Circuits Syst. Ⅱ: Anal. Digit. Signal Proc. , vol. 45, no. 12, pp. 1601-1605, Dec. 1998. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=746682