-
Abstract: Magnetic resonance imaging (MRI) reconstruction from undersampled data has always been a challenging and fascinating task due to its implicit ill-posed nature and its significance accompanied with the emerging compressed sensing (CS) theory. Most state-of-the-art sparse representation based CS approaches partition the image into overlapped patches, and process each patch separately. These methods, however, lose important spatial structures of the signal of interest, and ignore the consistency of pixels, which is a strong constraint for MR image. In this paper, we propose a new reconstruction method, which builds on recently introduced ideas of convolutional sparse coding in gradient domain (GradCSC) to address above mentioned issue. As opposed to patch-based methods, GradCSC directly operates on the whole gradient image to capture the correlation between local neighborhoods and exploits the gradient image global correlation to produce better edges and sharp features of gradient image. It enables local features implicitly existed in the gradient images to be captured effectively. Extensive experimental results demonstrate that the proposed algorithm achieves higher quality reconstructions than alternative methods and converges quickly at various sampling schemes and k-space acceleration factors.
-
Key words:
- Alternating direction method of multipliers /
- convolutional sparse coding(CSC) /
- filter learning /
- gradient image /
- magnetic resonance imaging(MRI)reconstruction
摘要: 从欠采样数据中进行磁共振成像(简称MRI)重建一直是一项具有挑战性和吸引力的任务,因为这是一个病态问题,且伴随着压缩感知理论会具有重要的意义.基于压缩感知的多数先进稀疏表示方法是将图像分割成重叠的图像块,然后每个图像块分开处理.然而,这些方法丢失了信号的重要空间结构,且忽略了对MR图像有强大约束的像素一致性.在文章中我们提出了一种新型的重建方法,这种方法是将最近提出的卷积稀疏编码与梯度域结合起来用于解决上述所提到的问题.不同于基于图像块状的方法,本文提出的算法是直接在整个梯度域图像中获取相邻局部的相关性,利用梯度域图像的全局相关性产生更好的梯度域图像边缘,锐利特征.提出的算法也能够高效的获取暗含在梯度域图像中的局部特征.与对比算法相比,大量的实验结果表明本文算法具有更好的质量重建,且在不同采样方案,不同K-空间加速因子情况下具有更快速的收敛. -
-
Algorithm 1. The GradCSC algorithm 1: Initialization: ${{z}_{k}}^{0}=0$, ${{d}_{k}}^{0}=0$, ${{({{b}^{(i)}})}^{0}}=0$, $i=1, 2$; ${{u}^{0}}=F_{p}^{T}f$
2: For $j=1, 2, \ldots $ repeat until a stop-criterion is satisfied
3: ${{({{w}^{(i)}})}^{j+1}}=\ \frac{{{\nu }_{2}}[{{({{b}^{(i)}})}^{j}}+{{({{\nabla }^{(i)}}u)}^{j}}]+\sum\limits_{k=1}^{K}{d_{_{k}}^{j}*z_{_{k}}^{j}}}{2{{\nu }_{2}}+1}, \ \ i=1, 2$
4: Updating $\{{{d}_{k}}^{j+1}, {{z}_{k}}^{j+1}\}$ from difference images ${{({{w}^{(i)}})}^{j+1}}$ by (13), $i=1, 2$
5: Updating $\{ r_{1}^{^{\ell +1}}, r_{2}^{^{\ell +1}}, r_{3}^{^{\ell +1}} \}$ from the coefficients, and the filters by (14)
6: ${{u}^{j+1}}={{F}^{\rm{-}1}}( \frac{F[{{\nu }_{1}}F_{p}^{T}f+{{\nu }_{2}}{{\nabla }^{T}}({{({{w}^{(i)}})}^{j}}^{+1}-{{({{b}^{(i)}})}^{j}})]}{{{\nu }_{1}}FF_{p}^{T}{{F}_{p}}{{F}^{T}}+{{\nu }_{2}}F{{\nabla }^{T}}{{F}^{T}}F\nabla {{F}^{T}}} )$
7: ${{({{b}^{(i)}})}^{j+1}}={{({{b}^{(i)}})}^{j}}+{{({{\nabla }^{(i)}}u)}^{j+1}}-{{({{w}^{(i)}})}^{j+1}}$, $i=1, 2$
8: End
9: Output ${{u}^{j+1}}$Table Ⅰ Reconstruction PSNR Values at Different Undersampling Factors With the Same 2D Random Sampling Trajectories
Undersampling factors 2.5-fold 4-fold 6-fold 8-fold 10-fold 20-fold DLMRI 35.92 35.19 31.26 30.76 30.13 26.39 GradDL 38.26 38.20 34.35 32.89 31.81 27.90 GradCSC 37.39 37.53 35.23 35.45 34.62 30.54 -
[1] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI:The application of compressed sensing for rapid MR imaging, " Magn. Reson. Med., vol. 58, no. 6, pp. 1182-1195, Dec. 2007. doi: 10.1002/(ISSN)1522-2594 [2] D. L. Donoho, "Compressed sensing, " IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. doi: 10.1109/TIT.2006.871582 [3] D. Liang, B. Liu, J. Wang, and L. Ying, "Accelerating SENSE using compressed sensing, " Magn. Reson. Med., vol. 62, no. 6, pp. 1574-1584, Dec. 2009. doi: 10.1002/mrm.v62:6 [4] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, "k-t SPARSE: high frame rate dynamic MRI exploiting spatiotemporal sparsity, " in Proc. 13th Ann. Meeting of ISMRM, Seattle, USA, 2006. [5] S. Q. Ma, W. T. Yin, Y. Zhang, and A. Chakraborty, "An efficient algorithm for compressed MR imaging using total variation and wavelets, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 1-8. [6] J. Trzasko and A. Manduca, "Highly undersampled magnetic resonance image reconstruction via homotopic e0-minimization, " IEEE Trans. Med. Imaging, vol. 28, no. 1, pp. 106-121, Jan. 2009. doi: 10.1109/TMI.2008.927346 [7] S. M. Gho, Y. Nam, S. Y. Zho, E. Y. Kim, and D. H. Kim, "Three dimension double inversion recovery gray matter imaging using compressed sensing, " Magn. Reson. Imaging, vol. 28, no. 10, pp. 1395-1402, Dec. 2010. doi: 10.1016/j.mri.2010.06.029 [8] M. Guerquin-Kern, M. Haberlin, K. P. Pruessmann, and M. Unser, "A fast wavelet-based reconstruction method for magnetic resonance imaging, " IEEE Trans. Med. Imaging, vol. 30, no. 9, pp. 1649-1660, Sep. 2011. doi: 10.1109/TMI.2011.2140121 [9] L. Y. Chen, M. C. Schabel, and E. V. R. DiBella, "Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints, " Magn. Reson. Imaging, vol. 28, no. 5, pp. 637-645, Jun. 2010. doi: 10.1016/j.mri.2010.03.001 [10] Q. G. Liu, S. S. Wang, K. Yang, J. H. Luo, Y. M. Zhu, and D. Liang, "Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating, " IEEE Trans. Med. Imaging, vol. 32, no. 7, pp. 1290-1301, Jul. 2013. doi: 10.1109/TMI.2013.2256464 [11] X. B. Qu, D. Guo, B. D. Ning, Y. K. Hou, Y. L. Lin, S. H. Cai, and Z. Chen, "Undersampled MRI reconstruction with patch-based directional wavelets, " Magn. Reson. Imaging, vol. 30, no. 7, pp. 964-977, Sep. 2012. doi: 10.1016/j.mri.2012.02.019 [12] S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning, " IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1028-1041, May 2011. doi: 10.1109/TMI.2010.2090538 [13] Q. G. Liu, S. S. Wang, L. Ying, X. Peng, Y. J. Zhu, and D. Liang, "Adaptive dictionary learning in sparse gradient domain for image recovery, " IEEE Trans. Image Process., vol. 22, no. 12, pp. 4652-4663, Dec. 2013. doi: 10.1109/TIP.2013.2277798 [14] Z. L. Hu, Q. G. Liu, N. Zhang, Y. W. Zhang, X. Peng, P. Z. Wu, H. R. Zheng, and D. Liang, "Image reconstruction from few-view CT data by gradient-domain dictionary learning, " J. X-Ray Sci. Technol., vol. 24, no. 4, pp. 627-638, Jul. 2016. doi: 10.3233/XST-160579 [15] X. M. Luo, Z. Y. Suo, and Q. G. Liu, "Efficient InSAR phase noise filtering based on adaptive dictionary learning in gradient vector domain, " Chin. J. Eng. Math., vol. 32, no. 6, pp. 801-811, Dec. 2015. doi: 10.1162/neco.1995.7.6.1129 [16] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks, " in Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 2010, pp. 2528-2535. [17] B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set:a strategy employed by V1?, " Vision Res., vol. 37, no. 23, pp. 3311-3325, Dec. 1997. doi: 10.1016/S0042-6989(97)00169-7 [18] A. Szlam, K. Kavukcuoglu, and Y. LeCun, "Convolutional matching pursuit and dictionary training, " arXiv: 1010. 0422, Oct. 2010. [19] B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin, "Deep learning with hierarchical convolutional factor analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1887-1901, Aug. 2013. doi: 10.1109/TPAMI.2013.19 [20] K. Kavukcuoglu, P. Sermanet, Y. L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning convolutional feature hierarchies for visual recognition, " in Proc. 23rd Int. Conf. Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2010, pp. 1090-1098. [21] M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive deconvolutional networks for mid and high level feature learning, " in Proc. 2011 IEEE Int. Conf. Computer Vision (ICCV), Barcelona, USA, 2011, pp. 2018-2025. [22] F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich, "Imaging in scattering media using correlation image sensors and sparse convolutional coding, " Opt. Express, vol. 22, no. 21, pp. 26338-26350, Oct. 2014. doi: 10.1364/OE.22.026338 [23] X. M. Hu, Y. Deng, X. Lin, J. L. Suo, Q. H. Dai, C. Barsi, and R. Raskar, "Robust and accurate transient light transport decomposition via convolutional sparse coding, " Opt. Lett., vol. 39, no. 11, pp. 3177-3180, Jun. 2014. doi: 10.1364/OL.39.003177 [24] J. Y. Xie, L. L. Xu, and E. H. Chen, "Image denoising and inpainting with deep neural networks, " in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 341-349. [25] S. H. Gu, W. M. Zuo, Q. Xie, D. Y. Meng, X. C. Feng, and L. Zhang, "Convolutional sparse coding for image superresolution, " in Proc. 2015 IEEE Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1823-1831. [26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 1097-1105. [27] Y. Y. Zhu, M. Cox, and S. Lucey, "3D motion reconstruction for real-world camera motion, " in Proc. 2011 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2011, pp. 1-8. [28] Y. Y. Zhu and S. Lucey, "Convolutional sparse coding for trajectory reconstruction, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 529-540, Mar. 2015. doi: 10.1109/TPAMI.2013.2295311 [29] Y. Y. Zhu, D. Huang, F. De La Torre, and S. Lucey, "Complex non-rigid motion 3D reconstruction by union of subspaces, " in Proc. 2014 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 1542-1549. [30] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, "Convolutional sparse coding for high dynamic range imaging, " Computer Graphics, vol. 35, no. 2, pp. 153-163, May 2016. http://dl.acm.org/citation.cfm?id=3028600 [31] J. F. Yang, Y. Zhang, and W. T. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, " IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 288-297, Apr. 2010. doi: 10.1109/JSTSP.2010.2042333 [32] H. Bristow, A. Eriksson, and S. Lucey, "Fast convolutional sparse coding, " in Proc. 2013 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 2013, pp. 391-398. [33] B. Wohlberg, "Efficient convolutional sparse coding, " in Proc. 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 7173-7177. 期刊类型引用(16)
1. 马亚杰,管理,姜斌,陈丽君,黄斌达,黄玉莹. 基于改进量子粒子群算法的柔性车间调度与预测性维护协同优化管控方法. 中国科学:技术科学. 2025(02): 295-308 . 百度学术
2. 马亚杰,姜斌,管理,陈丽君,黄斌达,陈智. 柔性车间多目标动态调度方法及其在航空制造中的应用综述(英文). Transactions of Nanjing University of Aeronautics and Astronautics. 2025(01): 1-24 . 百度学术
3. 温廷新,关婷誉. 考虑能耗和运输的有限缓冲区混合流水车间调度. 系统仿真学报. 2024(06): 1344-1358 . 百度学术
4. 刘璐,宋海草,姜天华,邓冠龙,巩庆涛. 基于改进生物迁徙算法的双资源柔性作业车间节能调度问题. 计算机集成制造系统. 2024(09): 3125-3141 . 百度学术
5. 赵慧娟,范明霞,姜盼松,温禄兴. 时间-能耗-质量权衡优化的柔性作业车间多目标调度研究. 计算机应用与软件. 2023(05): 67-75 . 百度学术
6. 李瑞,龚文引. 改进的基于分解的多目标进化算法求解双目标模糊柔性作业车间调度问题. 控制理论与应用. 2022(01): 31-40 . 百度学术
7. 彭来湖,王伟华,万昌江,万璐璐. 基于遗传模拟退火算法的柔性流水车间调度节能优化. 软件工程. 2022(11): 49-55 . 百度学术
8. 李新玲,张天昊. 基于精益生产节拍化的智能排程系统设计. 中国设备工程. 2022(24): 33-35 . 百度学术
9. 李俊青,杜宇,田杰,段培永,潘全科. 带运输资源约束柔性作业车间调度问题的人工蜂群算法. 电子学报. 2021(02): 324-330 . 百度学术
10. 蔡敏,王艳,纪志成. 基于多策略融合量子粒子群算法的MOFFJSP研究. 系统仿真学报. 2021(11): 2615-2626 . 百度学术
11. 李明,雷德明. 基于新型帝国竞争算法的高维多目标柔性作业车间调度. 控制理论与应用. 2019(06): 893-901 . 百度学术
12. 雷德明,操三强,李明. 求解约束优化问题的新型帝国竞争算法. 控制与决策. 2019(08): 1663-1671 . 百度学术
13. 张清勇,王皓冉,雷德明. 求解分布式并行机调度的新型帝国竞争算法. 华中科技大学学报(自然科学版). 2019(08): 86-91 . 百度学术
14. 操三强,雷德明. 一种新型约束多目标帝国竞争算法. 信息与控制. 2019(04): 437-444+451 . 百度学术
15. 杨冬婧,雷德明. 新型蛙跳算法求解总能耗约束FJSP. 中国机械工程. 2018(22): 2682-2689 . 百度学术
16. 王艳红,于宁,蔡明,邢大伟. 动态制造系统生产计划与调度协同优化. 中国机械工程. 2018(22): 2767-2771 . 百度学术
其他类型引用(40)
-