2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction

Xiong Jiaojiao Lu Hongyang Zhang Minghui Liu Qiegen

熊娇娇, 卢红阳, 张明辉, 刘且根. 基于梯度域的卷积稀疏编码磁共振成像重建. 自动化学报, 2017, 43(10): 1841-1849. doi: 10.16383/j.aas.2017.e160135
引用本文: 熊娇娇, 卢红阳, 张明辉, 刘且根. 基于梯度域的卷积稀疏编码磁共振成像重建. 自动化学报, 2017, 43(10): 1841-1849. doi: 10.16383/j.aas.2017.e160135
Xiong Jiaojiao, Lu Hongyang, Zhang Minghui, Liu Qiegen. Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction. ACTA AUTOMATICA SINICA, 2017, 43(10): 1841-1849. doi: 10.16383/j.aas.2017.e160135
Citation: Xiong Jiaojiao, Lu Hongyang, Zhang Minghui, Liu Qiegen. Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction. ACTA AUTOMATICA SINICA, 2017, 43(10): 1841-1849. doi: 10.16383/j.aas.2017.e160135

基于梯度域的卷积稀疏编码磁共振成像重建

doi: 10.16383/j.aas.2017.e160135
基金项目: 

Jiangxi Province Innovation Projects for Postgraduate Funds YC2016-S006

the National Natural Science Foundation of China 61661031

the National Natural Science Foundation of China 61362001

the International Postdoctoral Exchange Fellowship Program, and Jiangxi Advanced Project for Post-Doctoral Research Fund 2014KY02

Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction

Funds: 

Jiangxi Province Innovation Projects for Postgraduate Funds YC2016-S006

the National Natural Science Foundation of China 61661031

the National Natural Science Foundation of China 61362001

the International Postdoctoral Exchange Fellowship Program, and Jiangxi Advanced Project for Post-Doctoral Research Fund 2014KY02

More Information
    Author Bio:

    Jiaojiao Xiong is pursuing the M.Sc.degree at the School of Information Engineering, Nanchang University, Nanchang, China.Her research interests include image reconstruction and pattern recognition.E-mail:xiongjiaojiao0126@163.com

    Hongyang Lu is a master student.Her research interests include sparse representation theory and its applications in image processing, computer vision and MRI reconstruction.E-mail:luhongyang6890@163.com

    Minghui Zhang received the M.S.degree from Chongqing University, Chongqing, in 1990, majored in biomedical engineering.His research interests include MRI reconstruction, image compression and restoration, and pattern recognition.E-mail:zhangmh3529@163.com

    Corresponding author: Qiegen Liu received the M.Sc.degree in computation mathematics and Ph.D.degree in biomedical engineering from Shanghai Jiaotong University.Since 2012, he has been with the School of Information Engineering, Nanchang University, Nanchang, China, where he is currently an Associate Professor.He is also a postdoc at Beckman Institute, University of Illinois at Urbana Champaign, USA.His research interests include compressed sensing, image reconstruction, and pattern recognition.Corresponding author of this paper.E-mail:liuqiegen@ncu.edu.cn
  • 摘要: 从欠采样数据中进行磁共振成像(简称MRI)重建一直是一项具有挑战性和吸引力的任务,因为这是一个病态问题,且伴随着压缩感知理论会具有重要的意义.基于压缩感知的多数先进稀疏表示方法是将图像分割成重叠的图像块,然后每个图像块分开处理.然而,这些方法丢失了信号的重要空间结构,且忽略了对MR图像有强大约束的像素一致性.在文章中我们提出了一种新型的重建方法,这种方法是将最近提出的卷积稀疏编码与梯度域结合起来用于解决上述所提到的问题.不同于基于图像块状的方法,本文提出的算法是直接在整个梯度域图像中获取相邻局部的相关性,利用梯度域图像的全局相关性产生更好的梯度域图像边缘,锐利特征.提出的算法也能够高效的获取暗含在梯度域图像中的局部特征.与对比算法相比,大量的实验结果表明本文算法具有更好的质量重建,且在不同采样方案,不同K-空间加速因子情况下具有更快速的收敛.
    Recommended by Associate Editor Cong Wang
  • Fig.  1  One illustration of filters learned. (a) Learned dictionary by DLMRI, (b) Learned dictionary by GradDL, and (c) Learned filter by GradCSC, respectively.

    Fig.  2  The reconstruction results of the Lumbar spine image under different undersampling factors with 2D random sampling.

    Fig.  3  The reconstruction results of the axial T2-weighted brain image under different undersampling schemes.

    Fig.  4  The reconstruction results of the COW image under different noise levels.

    Algorithm 1. The GradCSC algorithm
    1: Initialization: ${{z}_{k}}^{0}=0$, ${{d}_{k}}^{0}=0$, ${{({{b}^{(i)}})}^{0}}=0$, $i=1, 2$; ${{u}^{0}}=F_{p}^{T}f$
    2: For $j=1, 2, \ldots $ repeat until a stop-criterion is satisfied
    3:     ${{({{w}^{(i)}})}^{j+1}}=\ \frac{{{\nu }_{2}}[{{({{b}^{(i)}})}^{j}}+{{({{\nabla }^{(i)}}u)}^{j}}]+\sum\limits_{k=1}^{K}{d_{_{k}}^{j}*z_{_{k}}^{j}}}{2{{\nu }_{2}}+1}, \ \ i=1, 2$
    4:     Updating $\{{{d}_{k}}^{j+1}, {{z}_{k}}^{j+1}\}$ from difference images ${{({{w}^{(i)}})}^{j+1}}$ by (13), $i=1, 2$
    5:     Updating $\{ r_{1}^{^{\ell +1}}, r_{2}^{^{\ell +1}}, r_{3}^{^{\ell +1}} \}$ from the coefficients, and the filters by (14)
    6:     ${{u}^{j+1}}={{F}^{\rm{-}1}}( \frac{F[{{\nu }_{1}}F_{p}^{T}f+{{\nu }_{2}}{{\nabla }^{T}}({{({{w}^{(i)}})}^{j}}^{+1}-{{({{b}^{(i)}})}^{j}})]}{{{\nu }_{1}}FF_{p}^{T}{{F}_{p}}{{F}^{T}}+{{\nu }_{2}}F{{\nabla }^{T}}{{F}^{T}}F\nabla {{F}^{T}}} )$
    7:     ${{({{b}^{(i)}})}^{j+1}}={{({{b}^{(i)}})}^{j}}+{{({{\nabla }^{(i)}}u)}^{j+1}}-{{({{w}^{(i)}})}^{j+1}}$, $i=1, 2$
    8: End
    9: Output ${{u}^{j+1}}$
    下载: 导出CSV

    Table  Ⅰ  Reconstruction PSNR Values at Different Undersampling Factors With the Same 2D Random Sampling Trajectories

    Undersampling factors 2.5-fold 4-fold 6-fold 8-fold 10-fold 20-fold
    DLMRI 35.92 35.19 31.26 30.76 30.13 26.39
    GradDL 38.26 38.20 34.35 32.89 31.81 27.90
    GradCSC 37.39 37.53 35.23 35.45 34.62 30.54
    下载: 导出CSV
  • [1] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI:The application of compressed sensing for rapid MR imaging, " Magn. Reson. Med., vol. 58, no. 6, pp. 1182-1195, Dec. 2007. doi: 10.1002/(ISSN)1522-2594
    [2] D. L. Donoho, "Compressed sensing, " IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. doi: 10.1109/TIT.2006.871582
    [3] D. Liang, B. Liu, J. Wang, and L. Ying, "Accelerating SENSE using compressed sensing, " Magn. Reson. Med., vol. 62, no. 6, pp. 1574-1584, Dec. 2009. doi: 10.1002/mrm.v62:6
    [4] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, "k-t SPARSE: high frame rate dynamic MRI exploiting spatiotemporal sparsity, " in Proc. 13th Ann. Meeting of ISMRM, Seattle, USA, 2006.
    [5] S. Q. Ma, W. T. Yin, Y. Zhang, and A. Chakraborty, "An efficient algorithm for compressed MR imaging using total variation and wavelets, " in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008, pp. 1-8.
    [6] J. Trzasko and A. Manduca, "Highly undersampled magnetic resonance image reconstruction via homotopic e0-minimization, " IEEE Trans. Med. Imaging, vol. 28, no. 1, pp. 106-121, Jan. 2009. doi: 10.1109/TMI.2008.927346
    [7] S. M. Gho, Y. Nam, S. Y. Zho, E. Y. Kim, and D. H. Kim, "Three dimension double inversion recovery gray matter imaging using compressed sensing, " Magn. Reson. Imaging, vol. 28, no. 10, pp. 1395-1402, Dec. 2010. doi: 10.1016/j.mri.2010.06.029
    [8] M. Guerquin-Kern, M. Haberlin, K. P. Pruessmann, and M. Unser, "A fast wavelet-based reconstruction method for magnetic resonance imaging, " IEEE Trans. Med. Imaging, vol. 30, no. 9, pp. 1649-1660, Sep. 2011. doi: 10.1109/TMI.2011.2140121
    [9] L. Y. Chen, M. C. Schabel, and E. V. R. DiBella, "Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints, " Magn. Reson. Imaging, vol. 28, no. 5, pp. 637-645, Jun. 2010. doi: 10.1016/j.mri.2010.03.001
    [10] Q. G. Liu, S. S. Wang, K. Yang, J. H. Luo, Y. M. Zhu, and D. Liang, "Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating, " IEEE Trans. Med. Imaging, vol. 32, no. 7, pp. 1290-1301, Jul. 2013. doi: 10.1109/TMI.2013.2256464
    [11] X. B. Qu, D. Guo, B. D. Ning, Y. K. Hou, Y. L. Lin, S. H. Cai, and Z. Chen, "Undersampled MRI reconstruction with patch-based directional wavelets, " Magn. Reson. Imaging, vol. 30, no. 7, pp. 964-977, Sep. 2012. doi: 10.1016/j.mri.2012.02.019
    [12] S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning, " IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1028-1041, May 2011. doi: 10.1109/TMI.2010.2090538
    [13] Q. G. Liu, S. S. Wang, L. Ying, X. Peng, Y. J. Zhu, and D. Liang, "Adaptive dictionary learning in sparse gradient domain for image recovery, " IEEE Trans. Image Process., vol. 22, no. 12, pp. 4652-4663, Dec. 2013. doi: 10.1109/TIP.2013.2277798
    [14] Z. L. Hu, Q. G. Liu, N. Zhang, Y. W. Zhang, X. Peng, P. Z. Wu, H. R. Zheng, and D. Liang, "Image reconstruction from few-view CT data by gradient-domain dictionary learning, " J. X-Ray Sci. Technol., vol. 24, no. 4, pp. 627-638, Jul. 2016. doi: 10.3233/XST-160579
    [15] X. M. Luo, Z. Y. Suo, and Q. G. Liu, "Efficient InSAR phase noise filtering based on adaptive dictionary learning in gradient vector domain, " Chin. J. Eng. Math., vol. 32, no. 6, pp. 801-811, Dec. 2015. doi: 10.1162/neco.1995.7.6.1129
    [16] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks, " in Proc. 2010 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 2010, pp. 2528-2535.
    [17] B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set:a strategy employed by V1?, " Vision Res., vol. 37, no. 23, pp. 3311-3325, Dec. 1997. doi: 10.1016/S0042-6989(97)00169-7
    [18] A. Szlam, K. Kavukcuoglu, and Y. LeCun, "Convolutional matching pursuit and dictionary training, " arXiv: 1010. 0422, Oct. 2010.
    [19] B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin, "Deep learning with hierarchical convolutional factor analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1887-1901, Aug. 2013. doi: 10.1109/TPAMI.2013.19
    [20] K. Kavukcuoglu, P. Sermanet, Y. L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning convolutional feature hierarchies for visual recognition, " in Proc. 23rd Int. Conf. Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2010, pp. 1090-1098.
    [21] M. D. Zeiler, G. W. Taylor, and R. Fergus, "Adaptive deconvolutional networks for mid and high level feature learning, " in Proc. 2011 IEEE Int. Conf. Computer Vision (ICCV), Barcelona, USA, 2011, pp. 2018-2025.
    [22] F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich, "Imaging in scattering media using correlation image sensors and sparse convolutional coding, " Opt. Express, vol. 22, no. 21, pp. 26338-26350, Oct. 2014. doi: 10.1364/OE.22.026338
    [23] X. M. Hu, Y. Deng, X. Lin, J. L. Suo, Q. H. Dai, C. Barsi, and R. Raskar, "Robust and accurate transient light transport decomposition via convolutional sparse coding, " Opt. Lett., vol. 39, no. 11, pp. 3177-3180, Jun. 2014. doi: 10.1364/OL.39.003177
    [24] J. Y. Xie, L. L. Xu, and E. H. Chen, "Image denoising and inpainting with deep neural networks, " in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 341-349.
    [25] S. H. Gu, W. M. Zuo, Q. Xie, D. Y. Meng, X. C. Feng, and L. Zhang, "Convolutional sparse coding for image superresolution, " in Proc. 2015 IEEE Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1823-1831.
    [26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks, " in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012, pp. 1097-1105.
    [27] Y. Y. Zhu, M. Cox, and S. Lucey, "3D motion reconstruction for real-world camera motion, " in Proc. 2011 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 2011, pp. 1-8.
    [28] Y. Y. Zhu and S. Lucey, "Convolutional sparse coding for trajectory reconstruction, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 529-540, Mar. 2015. doi: 10.1109/TPAMI.2013.2295311
    [29] Y. Y. Zhu, D. Huang, F. De La Torre, and S. Lucey, "Complex non-rigid motion 3D reconstruction by union of subspaces, " in Proc. 2014 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 1542-1549.
    [30] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia, "Convolutional sparse coding for high dynamic range imaging, " Computer Graphics, vol. 35, no. 2, pp. 153-163, May 2016. http://dl.acm.org/citation.cfm?id=3028600
    [31] J. F. Yang, Y. Zhang, and W. T. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, " IEEE J. Sel. Topics Signal Process., vol. 4, no. 2, pp. 288-297, Apr. 2010. doi: 10.1109/JSTSP.2010.2042333
    [32] H. Bristow, A. Eriksson, and S. Lucey, "Fast convolutional sparse coding, " in Proc. 2013 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 2013, pp. 391-398.
    [33] B. Wohlberg, "Efficient convolutional sparse coding, " in Proc. 2014 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 7173-7177.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  2138
  • HTML全文浏览量:  332
  • PDF下载量:  981
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-13
  • 录用日期:  2016-12-07
  • 刊出日期:  2017-10-20

目录

    /

    返回文章
    返回