2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs

Li Yuancheng Li Zongpu Yang Liqun Wang Bei

李元诚, 李宗圃, 杨立群, 王蓓. 基于改进量子差分进化的含分布式电源的配电网无功优化. 自动化学报, 2017, 43(7): 1280-1288. doi: 10.16383/j.aas.2017.e150304
引用本文: 李元诚, 李宗圃, 杨立群, 王蓓. 基于改进量子差分进化的含分布式电源的配电网无功优化. 自动化学报, 2017, 43(7): 1280-1288. doi: 10.16383/j.aas.2017.e150304
Li Yuancheng, Li Zongpu, Yang Liqun, Wang Bei. An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs. ACTA AUTOMATICA SINICA, 2017, 43(7): 1280-1288. doi: 10.16383/j.aas.2017.e150304
Citation: Li Yuancheng, Li Zongpu, Yang Liqun, Wang Bei. An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs. ACTA AUTOMATICA SINICA, 2017, 43(7): 1280-1288. doi: 10.16383/j.aas.2017.e150304

基于改进量子差分进化的含分布式电源的配电网无功优化

doi: 10.16383/j.aas.2017.e150304

An Improved Quantum Differential Evolution Algorithm for Optimization and Control in Power Systems Including DGs

More Information
    Author Bio:

    Zongpu Li is a master student of School of Control and Computer Engineering, North China Electric Power University since 2013.His research interest is reactive power optimization power grid.E-mail:767256282@qq.com

    Liqun Yang is a master student of the School of Control and Computer Engineering, North China Electric Power University since 2013.His research intersts include cyber security and reactive power optimization of power grid.E-mail:ylqncepu@163.com

    Bei Wang received the master degree from the School of Control and Computer Engineering, North China Electric Power University, China, in 2015.Her research interests include cyber security and reactive power optimization of power grid.E-mail:tinybaby007@163.com

    Corresponding author: Yuancheng Li received the Ph.D.degree from the University of Science and Technology of China, Hefei, China, in 2003.From 2004 to 2005, he was a postdoctoral research fellow in the Digital Media Lab, Beihang University, Beijing, China.Since 2005, he has been with the North China Electric Power University, where he is a Professor and the dean of the Institute of Smart Grid and Information Security.From 2009 to 2010, he was a postdoctoral research fellow in the Cyber Security Lab, Pennsylvania State University, Pennsylvania, USA.His current research interests include smart grid operation and control, information security in Smart Grid.Corresponding author of this paper.E-mail:dflyc@163.com
  • 摘要: 差分进化算法(DE)已被证明为解决无功优化问题的有效方法.随着越来越多的分布式电源并网,对配电网潮流、电压均有一定改变,同时也影响了DE的鲁棒性和性能.本文在研究DE基础上,针对其收敛过早、局部搜索能力较差的缺陷,分析了量子计算思想和人工蜂群算法的优势,提出改进量子差分进化混合算法(IQDE).通过量子编码思想提高了种群个体的多样性,人工蜂群算法的观察蜂加速进化操作和侦查蜂随机搜索操作分别提高了算法的局部搜索和全局搜索性能.建立以有功网损最小为目标的数学模型,将IQDE算法和DE算法分别用于14节点和30节点标准数据集进行大量仿真实验.实验结果表明,IQDE算法用更少的收敛时间、更小的种群规模便可以获得与DE算法相同甚至更佳的优化效果,并且可以很好的应用于解决难分布式电源的配电网无功优化问题.
    Recommended by Associate Editor Dianwei Qian
  • Fig.  1  The flowchart of IQDE hybrid algorithm.

    Fig.  2  The average active power losses comparison chart of 14-bus system.

    Fig.  3  The average convergence time comparison chart of 14-bus system.

    Fig.  4  Convergence curve comparison chart of 14-bus system.

    Fig.  5  30-bus system with DGs.

    Fig.  6  The convergence curve of IQDE and DE (30-bus system containing DGs).

    Table  Ⅰ  Number of Control Variables of IEEE 14-Bus System

    Variable Number
    T 3
    U 5
    Q 2
    SUM 10
    下载: 导出CSV

    Table  Ⅱ  Setting of Control Variables of IEEE 14-Bus System

    Variable Min Max Step
    T 0.9 1.1 0.01
    U 0.9 1.1 -
    Q 0 0.18 0.06
    下载: 导出CSV

    Table  Ⅲ  Constraints of The State Variables of IEEE 14-Bus

    Node Min (MVar) Max (MVar)
    1 0 10
    2 -40 50
    5 -40 40
    8 -10 40
    11 -6 24
    13 -6 24
    下载: 导出CSV

    Table  Ⅳ  Statistics of Results for DE and IQDE (IEEE 14-Bus)

    SP Algorithm Lossmin Lossmax Lossavg Timemin Timemax Timeavg
    10 DE 12.3714 13.1578 12.4401 3.8977 5.3590 4.9267
    IQDE 12.3712 12.5450 12.3858 4.9335 9.0550 7.2024
    20 DE 12.3713 12.6364 12.3892 8.7948 9.9069 10.6250
    IQDE 12.3712 12.4035 12.3761 7.8281 14.6796 11.2216
    30 DE 12.3712 12.549 12.3876 12.569 15.7014 14.8099
    IQDE 12.3712 12.3712 12.3712 12.1678 17.7190 14.7212
    40 DE 12.3712 12.4463 12.3776 16.6632 21.4070 20.2090
    IQDE 12.3712 12.3712 12.3712 15.2144 21.7840 17.3987
    50 DE 12.3712 12.4319 12.3774 19.3238 26.4667 25.0056
    IQDE 12.3712 12.3712 12.3712 19.0269 26.7894 22.9460
    60 DE 12.3712 12.399 12.3754 25.2242 33.3440 30.3782
    IQDE 12.3712 12.3712 12.3712 24.4536 33.4038 28.0544
    下载: 导出CSV

    Table  Ⅴ  Control Variable Setting and PLOSS Before and After Optimization for IEEE 14-Bus System

    U1 U2 U3 U6 U8 T4 T5 T7 Q9 Q14 Ploss
    Before 1.06 1.045 1.01 1.07 1.09 0.978 0.969 0.932 18 18 13.393
    After 1.1 1.0779 1.0465 1.1 1.1 1.06 0.9 1.03 18 6 12.3712
    下载: 导出CSV

    Table  Ⅵ  Number of Control Variables of IEEE 30-Bus System

    Variable Number
    T 4
    U 6
    Q 2
    SUM 12
    下载: 导出CSV

    Table  Ⅶ  Setting of Control Variables of IEEE 30-Bus System

    Variable Minimum Maximum Step
    T 0.9 1.1 0.02
    U 0.9 1.1 -
    Q9 0 0.2 0.05
    Q24 0 0.04 0.01
    下载: 导出CSV

    Table  Ⅷ  Constraints of the State Variables of 30-Bus

    Node Min (MVar) Max (MVar)
    1 0 10
    2 -40 50
    5 -40 40
    8 -10 40
    11 -6 24
    13 -6 24
    下载: 导出CSV

    Table  Ⅸ  Statistics of Results for DE and IQDE (IEEE 14-Bus)

    Node Qout(MVar) Qlow Qup Pout (MW) Plow Pup
    9 0.0137 -0.012 0.025 0.15 0.11 0.19
    19 0.0554 -0.013 0.0689 0.25 0.1 0.45
    24 0.01 -0.0069 0.02 0.09 0.05 0.15
    26 0.0425 -0.15 0.0638 0.185 0.124 0.32
    下载: 导出CSV

    Table  Ⅹ  Statistics of Trial Results for IQDE in 30-Bus System Containing DGS

    No. Ploss Time No. Ploss Time No. Ploss Time
    1 16.2163 24.2024 11 16.2163 29.7159 21 16.2164 28.0426
    2 16.2163 25.9639 12 16.2163 29.4342 22 16.2163 23.9344
    3 16.2164 34.057 13 16.2163 27.2983 23 16.2166 33.3986
    4 16.2163 28.0157 14 16.2163 29.5571 24 16.2163 28.6112
    5 16.2163 30.1713 15 16.2166 34.6243 25 16.2164 23.7194
    6 16.2163 26.3804 16 16.2163 30.1448 26 16.2163 24.2563
    7 16.2165 31.7187 17 16.2164 25.1229 27 16.2164 32.3472
    8 16.2163 29.4458 18 16.2163 25.7156 28 16.2163 24.8397
    9 16.2163 25.2483 19 16.2164 33.2381 29 16.2164 28.5767
    10 16.2165 33.7229 20 16.2163 25.9665 30 16.2166 33.8194
    下载: 导出CSV

    Table  Ⅺ  Statistics of Trial Results (IEEE 30-Bus)

    Results Average Min Max
    Ploss 16.2164 16.2163 16.2166
    Time 28.7097 23.7194 34.6243
    下载: 导出CSV

    Table  Ⅻ  Statistics of Trial Results for IQDE in 30-Bus System Containing DGS

    U1 U2 U5 U8 U11 U13 T11 T12 T15 T36 Q10 Q24
    P1 1.06 1.045 1.01 1.01 1.082 1.071 1.06 1.04 0.96 1.04 10 3
    P2 1.1 1.0759 1.0431 1.0462 1.1 1.1 0.9 1 1.02 0.9 20 4
    下载: 导出CSV
  • [1] X. Y. Yin, X. Yan, X, Liu, and C. L. Wang, "Reactive power optimization based on improved hybrid genetic algorithm, " J. Northeast Dianli Univ. , vol. 34, no. 3, pp. 48-53, Jun. 2014. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CGCZ201101020.htm
    [2] T. Y. Xiang, Q. S. Zhou, F. P. Li, and Y. Wang, "Research on niche genetic algorithm for Reactive Power Optimization, " Proc. CSEE, vol. 25, no. 17, pp. 48-51, Sep. 2005. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGDC200517010.htm
    [3] M. Varadarajan and K. S. Swarup, "Network loss minimization with voltage security using differential evolution, " Electr. Power Syst. Res. , vol. 78, no. 5, pp. 815-823, May2008. http://www.researchgate.net/publication/223544555_Network_loss_minimization_with_voltage_security_using_differential_evolution
    [4] M. Basu, "Optimal power flow with FACTS devices using differential evolution, " Int. J. Electr. Power Energy Syst. , vol. 30, no. 2, pp. 150-156, Jan. 2008. https://www.researchgate.net/publication/222751245_Optimal_power_flow_with_FACTS_devices_using_differential_evolution
    [5] Y. T. Liu, L. Ma, and J. J. Zhang, "GA/SA/TS hybrid algorithms for reactive power optimization, " Proc. the IEEE Power Engineering Society Summer Meeting, Seattle, WA, USA, 2000, 245-249. https://www.researchgate.net/publication/3862451_GASATS_hybrid_algorithms_for_reactive_power_optimization
    [6] B. Zhao, C. X. Guo, and Y. J. Cao, "A multiagent-based particle swarm optimization approach for optimal reactive power dispatch, " IEEE Trans. on Power Syst. , vol. 20, no. 2, pp. 1070-1078, 2005. https://www.researchgate.net/publication/3267300_A_multiagent-based_particle_swarm_optimization_approach_for_optimal_reactive_power_dispatch
    [7] G. F. Fang, H. X. Wang, and X. S. Huang, "An improved genetic algorithm for reactive power optimization, " Proc. the EPSA, vol. 15, no. 4, pp. 15-18, Aug. 2003. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLZD200304004.htm
    [8] S. F. Wang, Z. P. Wan, H. Fan, C. Y. Xiang, and Y. G. Huang, "Reactive power optimization model and its hybrid algorithm based on bilevel programming, " Power Syst. Technol. , vol. 29, no. 9, pp. 22-25, May. 2005. https://www.researchgate.net/publication/290751059_Reactive_power_optimization_modeland_its_hybrid_algorithm_based_on_bilevel_programming
    [9] W. Liu, X. L. Liang, and X. L. An, "Power system reactive power optimization based on BEMPSO, " Power Syst. Protect. Control, vol. 38, no. 7, pp. 16-21, Apr. 2010. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDQW201007006.htm
    [10] L. F. Zheng, J. Y. Chen, H. Lin, S. L. Le, and F. Chen, "Reactive power optimization based on quantum particle swarm optimization in electrical power system, " Central China Electr. Power, vol. 24, no. 2, pp. 16-19, 2011. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HZDL201102005.htm
    [11] B. Li, "Research of distribution reactive power optimization based on modified differential evolution algorithm, " M. S. thesis, North China Electr. Power Univ. , Beijing, China, 2012.
    [12] D. Devaraj and J. P. Roselyn, "Genetic algorithm based reactive power dispatch for voltage stability improvement, " Int. J. Electr. Power Energy Syst. , vol. 32, no. 10, pp. 1151-1156, Dec. 2010. https://www.researchgate.net/publication/229092065_Genetic_algorithm_based_reactive_power_dispatch_for_voltage_stability_improvement
    [13] Z. C. Hu, X. F. Wang, and G. Taylor, "Stochastic optimal reactive power dispatch: formulation and solution method, " Int. J. Electr. Power Energy Syst. , vol. 32, no. 6, pp. 615-62, Jul. 2010. https://www.researchgate.net/publication/245214843_Stochastic_optimal_reactive_power_dispatch_Formulation_and_solution_method
    [14] T. Malakar and S. K. Goswami, "Active and reactive dispatch with minimum control movements, " Int. J. Electr. Power Energy Syst, vol. 44, no. 1, pp. 78-87, Jan. 2013. https://www.researchgate.net/publication/256970308_Active_and_reactive_dispatch_with_minimum_control_movements
    [15] R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, " J. Glob. Optim. , vol. 11, no. 4, pp. 341-359, Dec. 1997.
    [16] W. F. Gao, S. Y. Liu, and L. L. Huang, "A novel artificial bee colony algorithm based on modified search equation and orthogonal learning, " IEEE Trans. Cybernet. , vol. 43, no. 3, pp. 1011-1024, Jun. 2013. https://www.researchgate.net/publication/232533895_A_Novel_Artificial_Bee_Colony_Algorithm_Based_on_Modified_Search_Equation_and_Orthogonal_Learning
    [17] F. S. Abu-Mouti and M. E. El-Hawary, "Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm, " IEEE Trans. Power Deliv. , vol. 26, no. 4, pp. 2090-2101, Oct. 2011. https://www.researchgate.net/publication/252062867_Optimal_Distributed_Generation_Allocation_and_Sizing_in_Distribution_Systems_via_Artificial_Bee_Colony_Algorithm
    [18] R. W. Keyes, "Quantum computing and digital computing, " IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 2041, Aug. 2010. https://www.researchgate.net/publication/260512239_Quantum_Computing_and_Digital_Computing
  • 加载中
图(6) / 表(12)
计量
  • 文章访问数:  1676
  • HTML全文浏览量:  147
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-29
  • 录用日期:  2016-02-28
  • 刊出日期:  2017-07-20

目录

    /

    返回文章
    返回