[1]
|
T. K. Lee, S. H. Baek, Y. H. Choi, and S. Y. Oh, "Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation, " Robot. Auton. Syst. , vol. 59, no. 10, pp. 801-812, Oct. 2011. http://www.researchgate.net/publication/220142222_Smooth_coverage_path_planning_and_control_of_mobile_robots_based_on_high-resolution_grid_map_representation
|
[2]
|
H. T. Cheng, H. P. Chen, and Y. Liu, "Topological indoor localization and navigation for autonomous mobile robot, " IEEE Trans. Automat. Sci. Eng. , vol. 12, no. 2, pp. 729-738, Apr. 2015. https://www.researchgate.net/publication/274573448_Topological_Indoor_Localization_and_Navigation_for_Autonomous_Mobile_Robot
|
[3]
|
I. J. Cox and J. J. Leonard, "Modeling a dynamic environment using a Bayesian multiple hypothesis approach, " Artif. Intell. , vol. 66, no. 2, pp. 311-344, Apr. 1994. https://www.researchgate.net/publication/223080507_Modeling_a_dynamic_environment_using_a_Bayesian_multiple_hypothesis_approach?ev=auth_pub
|
[4]
|
B. H. Guo and Z. H. Li, "Dynamic environment modeling of mobile robots based on visual saliency, " Control Theory Appl. , vol. 30, no. 7, pp. 821-827, Jul. 2013. http://en.cnki.com.cn/Article_en/CJFDTotal-KZLY201307006.htm
|
[5]
|
R. Sim and J. J. Little, "Autonomous vision-based exploration and mapping using hybrid maps and Rao-Blackwellised particle filters, " in Proc. 2006 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Beijing, China, 2006, pp. 2082-2089. https://www.researchgate.net/publication/224685128_Autonomous_vision-based_exploration_and_mapping_using_hybrid_maps_and_Rao-Blackwellised_particle_filters
|
[6]
|
Y. N. Wang, Y. M. Yang, X. F. Yuan, Y. Zuo, Y. L. Zhou, F. Yin, and L. Tan, "Autonomous mobile robot navigation system designed in dynamic environment based on transferable belief model, " Measurement, vol. 44, no. 8, pp. 1389-1405, Oct. 2011. http://www.researchgate.net/publication/251542234_Autonomous_mobile_robot_navigation_system_designed_in_dynamic_environment_based_on_transferable_belief_model
|
[7]
|
A. A. S. Souza, R. Maia, and L. M. G. Gonçalves, "3-D probabilistic occupancy grid to robotic mapping with stereo vision, " in Current Advancements in Stereo Vision, A. Bhatti, Ed. Croacia: INTECH, 2012, pp. 181-198.
|
[8]
|
D. Hähnel, W. Burgard, and S. Thrun, "Learning compact 3-D models of indoor and outdoor environments with a mobile robot, " Robot. Auton. Syst. , vol. 44, no. 1, pp. 15-27, Jul. 2003.
|
[9]
|
K. Pirker, M. Rüther, H. Bischof, and G. Schweighofer, "Fast and accurate environment modeling using three-dimensional occupancy grids, " in Proc. 2011 IEEE Int. Conf. Computer Vision Workshops, Barcelona, Spain, 2011, pp. 1134-1140. https://www.researchgate.net/publication/221430086_Fast_and_accurate_environment_modeling_using_three-dimensional_occupancy_grids
|
[10]
|
S. Kim and J. Kim, "Occupancy mapping and surface reconstruction using local gaussian processes with Kinect sensors, " IEEE Trans. Cybern. , vol. 43, no. 5, pp. 1335-1346, Oct. 2013. http://www.ncbi.nlm.nih.gov/pubmed/23893758
|
[11]
|
Y. Zhuang, N. Jiang, H. S. Hu, and F. Yan, "3-D-laser-based scene measurement and place recognition for mobile robots in dynamic indoor environments, " IEEE Trans. Instrum. Meas. , vol. 62, no. 2, pp. 438-450, Feb. 2013. https://www.researchgate.net/publication/260492325_3-D-Laser-Based_Scene_Measurement_and_Place_Recognition_for_Mobile_Robots_in_Dynamic_Indoor_Environments
|
[12]
|
F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3-D mapping with an RGB-D camera, " IEEE Trans. Robot. , vol. 30, no. 1, pp. 177-187, Feb. 2014. https://www.researchgate.net/publication/260520054_3-D_Mapping_With_an_RGB-D_Camera
|
[13]
|
L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis, " IEEE Trans. Pattern Anal. Mach. Intell. , vol. 20, no. 11, pp. 1254-1259, Nov. 1998. http://www.researchgate.net/publication/3192913_A_model_of_saliency-based_visual_attention_for_rapid_scene_analysis
|
[14]
|
A. Kimura, R. Yonetani, and T. Hirayama, "Computational models of human visual attention and their implementations: A survey, " IEICE Trans. Inf. Syst. , vol. E96-D, no. 3, pp. 562-578, Mar. 2013. https://www.researchgate.net/publication/275603606_Computational_Models_of_Human_Visual_Attention_and_Their_Implementations_A_Survey
|
[15]
|
S. Frintrop, E. Rome, and H. I. Christensen, "Computational visual attention systems and their cognitive foundations: A survey, " ACM Trans. Appl. Percept. , vol. 7, no. 1, pp. Article ID: 6, Jan. 2010. https://www.researchgate.net/publication/220244956_Computational_visual_attention_systems_and_their_cognitive_foundations_A_survey?ev=prf_cit
|
[16]
|
S. Frintrop and P. Jensfelt, "Attentional landmarks and active gaze control for visual SLAM, " IEEE Trans. Robot. , vol. 24, no. 5, pp. 1054-1065, Oct. 2008. https://www.researchgate.net/publication/224332109_Attentional_Landmarks_and_Active_Gaze_Control_for_Visual_SLAM?ev=auth_pub
|
[17]
|
P. Newman and K. Ho, "SLAM-loop closing with visually salient features, " in Proc. 2005 IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, 2005, pp. 635-642. https://www.researchgate.net/publication/4210014_SLAM-Loop_Closing_with_Visually_Salient_Features
|
[18]
|
N. Ouerhani, A. Bur, and H. Hügli, "Visual attention-based robot self-localization, " in Proc. 2005 European Conf. Mobile Robotics, Ancona, Italy, 2005, pp. 8-13. https://www.researchgate.net/publication/33682208_Visual_attention-based_robot_self-localization
|
[19]
|
E. Einhorn, C. Schröter, and H. M. Gross, "Attention-driven monocular scene reconstruction for obstacle detection, robot navigation and map building, " Robot. Auton. Syst. , vol. 59, no. 5, pp. 296-309, May 2011. https://www.researchgate.net/publication/228572034_Attention-driven_monocular_scene_reconstruction_for_obstacle_detection_robot_navigation_and_map_building
|
[20]
|
R. Roberts, D. N. Ta, J. Straub, K. Ok, and F. Dellaert, "Saliency detection and model-based tracking: A two part vision system for small robot navigation in forested environment, " in Proc. SPIE 8387, Unmanned Systems Technology XIV, Baltimore, Maryland, USA, vol. 8387, Atricle ID 83870S. https://www.researchgate.net/publication/258716451_Saliency_detection_and_model-based_tracking_a_two_part_vision_system_for_small_robot_navigation_in_forested_environment
|
[21]
|
H. Bay, T. Tuytelaars, and L. Van Gool, "SURF: Speeded up robust features, " in Proc. 9th European Conf. Computer Vision, Graz, Austria, 2006, pp. 404-417. https://www.researchgate.net/publication/221303886_SURF_Speeded_Up_Robust_Features
|
[22]
|
D. G. Lowe, "Distinctive image features from scale-invariant keypoints, " Int. J. Comput. Vis. , vol. 60, no. 2, pp. 91-110, Nov. 2004.
|
[23]
|
D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis, " IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 5, pp. 603-619, May 2002.
|
[24]
|
R. Rocha, J. Dias, and A. Carvalho, "Cooperative multi-robot systems: A study of vision-based 3-D mapping using information theory, " Robot. Auton. Syst. , vol. 53, no. 3-4, pp. 282-311, Dec. 2005. https://www.researchgate.net/publication/4210106_Cooperative_Multi-Robot_Systems_A_study_of_Vision-based_3-D_Mapping_using_Information_Theory
|
[25]
|
S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. New York, NY, USA:MIT Press, 2005.
|
[26]
|
A. Murarka, "Building safety maps using vision for safe local mobile robot navigation, " Ph. D. dissertation, Dept. CS, Univ. Texas, Austin, USA, 2009. https://www.researchgate.net/publication/50417504_Building_safety_maps_using_vision_for_safe_local_mobile_robot_navigation
|
[27]
|
S. Hrabar, "An evaluation of stereo and laser-based range sensing for rotorcraft unmanned aerial vehicle obstacle avoidance, " J. Field Robot. , vol. 29, no. 2, pp. 215-239, Mar. -Apr. 2012. https://www.researchgate.net/publication/261847674_An_evaluation_of_stereo_and_laser-based_range_sensing_for_rotorcraft_unmanned_aerial_vehicle_obstacle_avoidance
|